GET AHEAD WITH NXP'S PN5180 FRONTEND - DESIGN YOUR POS TERMINAL WITH EMVCO (L1) CERTIFICATION

Session 1: EMVCo L1 Contactless certification process

PABLO FUENTES
JUNE 2018

Get ahead with NXP's PN5180 Frontend - Design your POS terminal with EMVCo (L1) certification

Session I, 28th June

EMVCo L1 Contactless certification process

https://attendee.gotowebinar.com/rt/3034896575464625666

Session II, 17th July

PN5180 for EMVCo L1 Contactless certification

https://attendee.gotowebinar.com/rt/5226533311901393666

Agenda - Session I

EMVCo L1 Contactless certification process

- EMV[®] Introduction
- EMV[®] Contactless specifications
- EMV[®] Analog L1 Tests
- Analog L1 Terminal Type Approval
- NXP Product portfolio for POS
- More support

EMV Introduction

Key challenges in POS design

Performance

Guarantee a good user experience

Interoperability

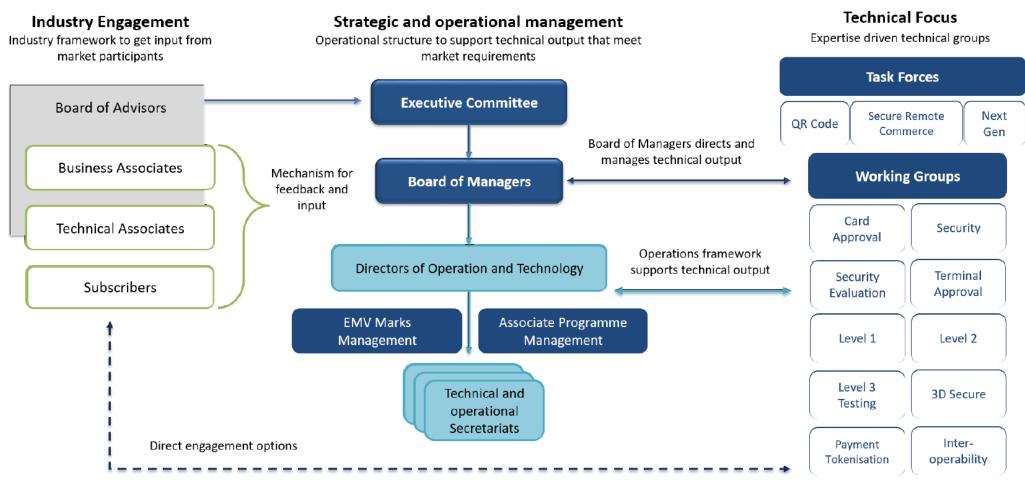
Device should work seamlessly with all type of cards in the market

Security

Ensure a secure transaction

EMV Specifications administered by EMVCo®

Group of specifications for payment infrastructures based on smart cards. They were created to facilite worldwide interoperability and acceptance of secure payment transactions.



About EMVCo

Source: www.emvco.com

EMV technologies

Contact

Defines how financial transactions are conducted using contact chip cards

Contactless

For transactions based on proximity NFC payment devices

Mobile Transactions

For mobile devices in the role of contactless cards or POS

QR Code

Specifications in relation with the use of QR codes for payment purposes

Payment Tokenisation

Describes a global Payment Tokenisation ecosystem that operates with existing payment ecosystems

Others

Secure Remote Commerce, 2nd Gen, 3-D Secure...

Source: www.emvco.com

EMV Contactless specifications v2.6

Contactless specifications

Structure

Main documents:

Book A - Architecture and general requirements

Overview of the POS system architecture, instructions and parameters exchanged with the Entry Point, ...

Book B - Entry point specification

Entry Point: Software in the POS responsible of the transaction pre-processing, protocol activation and interaction with the kernels.

Book C - Kernel specifications (6 levels)

Kernel: software in the POS System that processes certain contactless transactions.

L1 Specifications for Payment Systems, EMV Contactless Interface Specs

Describes the minimum functionality required of PICCs and PCDs to ensure correct operation and interoperability.

Other documents:

EMVCo Contactless Type Approval: PCD Test Bench and Test Case Requirements

Requirements for procedures and test equipment used for testing the analogue/digital interface of the PCDs.

PCD L1 Device Test Environment definition

Requirements for the DTE, application that the vendor needs to develop for the Type Approval Tests.

Contactless symbol reproduction requirements

PCD L1 Type Approval

PCD Level 1 Approval Process

1

Registration

After submitting and acceptance of the Request for Registration, EMVCo assigns a registration number to the Product Provider

2

Product declaration

The Product Provider selects a Test Laboratory and fills the ICS¹, document where it provides information about the product and its features

3

Product validation

A

Level 1 PCD Digital tests

The Product Provider selects a Test Laboratory and fills the ICS1, document where it provides information about the product and its features

B

PCD Prevalidation tests

To determine if the device is able to stablish a minimum level of communication with PICCs

Level 1 PCD Analog tests

Evaluates device from an analog perspective. Power, communication and waveform tests...

4

Product approval

After Product Provider completes a Request for Approval, EMVCo evaluates the test report from the laboratory and grant LOA²

PCD Level 1 Approval Process

1

Registration

After submitting and acceptance of the Request for Registration, EMVCo assigns a registration number to the Product Provider

2

Product declaration

The Product Provider selects a Test Laboratory and fills the ICS¹, document where it provides information about the product and its features

3

Product validation

A

Level 1 PCD Digital tests

The Product Provider selects a Test Laboratory and fills the ICS1, document where it provides information about the product and its features

E

PCD Prevalidation tests

To determine if the device is able to stablish a minimum level of communication with PICCs

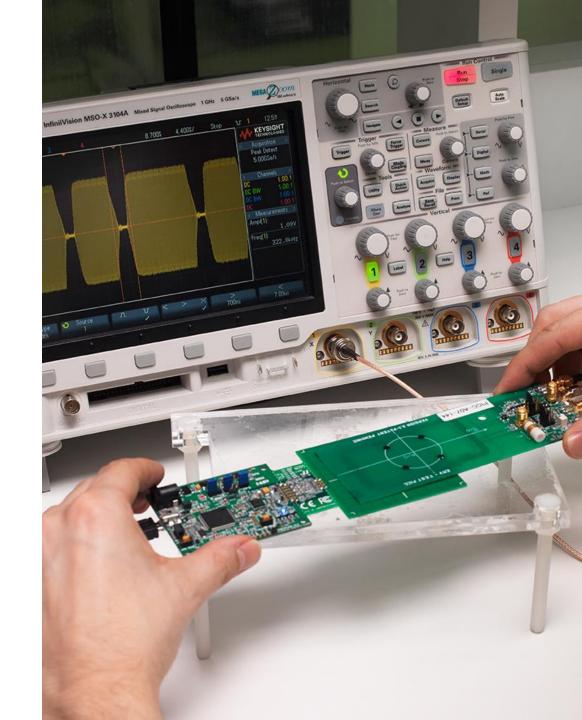
C

Level 1 PCD Analog tests

Evaluates device from an analog perspective. Power, communication and waveform tests... 4

Product aproval

After Product Provider completes a Request for Approval, EMVCo evaluates the test report from the laboratory and grant LOA²


EMV Analog L1 TestsContent

Environment

- Device Test Environment
- Contactless Symbol
- Positioning conventions
- EMVCo Reference PICC

Tests groups

- Power tests (Non-linear)
- Waveform tests (Linear)
- Responsiveness/Communication tests (Non-linear)
- Other tests

Device Test Environment

Definition

Software application that is used to control the device during the testing process for Type Approval

Characteristics

- Developed by the Product Provider
- Submitted to the Tests Laboratory along with the samples
- Includes a subset of applications (modes of operation):
 - PCD Controls
 - Pre-validation test application
 - Loopback application
 - Transaction Send application

Device Test Environment

Definition

Software application that is used to control the device during the testing process for Type Approval

Characteristics

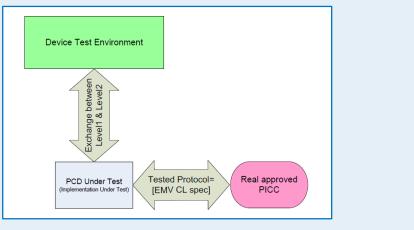
- Developed by the Product Provider
- Submitted to the Tests Laboratory along with the samples
- Includes a subset of applications (modes of operation):
 - PCD Controls
 - Pre-validation test application
 - Loopback application
 - Transaction Send application

Mode of operation that implements a list of commands that the Laboratory tester can execute in a one-shot mode or in an endless mode.

Commands included:

- Carrier On/Off
- Polling
- RF Reset
- WUPA
- WUPE
- WUPA → RATS
- WUPB → ATTRIB

Device Test Environment


Definition

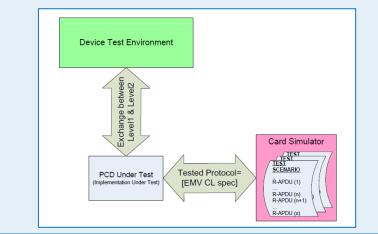
Software application that is used to control the device during the testing process for Type Approval

Characteristics

- Developed by the Product Provider
- Submitted to the Tests Laboratory along with the samples
- Includes a subset of applications (modes of operation):
 - PCD Controls
 - Pre-validation test application →
 - Loopback application
 - Transaction Send application

Application to test the communication of the device with actual and EMV Contactless compliant PICCs.

Device Test Environment


Definition

Software application that is used to control the device during the testing process for Type Approval

Characteristics

- Developed by the Product Provider
- Submitted to the Tests Laboratory along with the samples
- Includes a subset of applications (modes of operation):
 - PCD Controls
 - Pre-validation test application
 - Loopback application
 - Transaction Send application

Main application used for the Digital and Analogue tests. It is used to tests the communication with a Card simulator.

Device Test Environment

Definition

Software application that is used to control the device during the testing process for Type Approval

Characteristics

- Developed by the Product Provider
- Submitted to the Tests Laboratory along with the samples
- Includes a subset of applications (modes of operation):
 - PCD Controls
 - o Pre-validation test application
 - Loopback application
 - Transaction Send application -

Application used in a part of the Analogue tests where the commands are evaluated without waiting for the PICC answer.

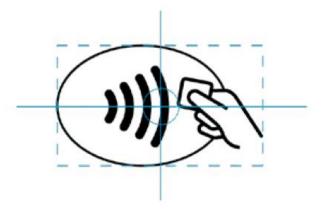
Device Test Environment

PCD Under Test (Implementation Under Test)

PCD signals

Test Bench with measurement equipment

Contactless Symbol

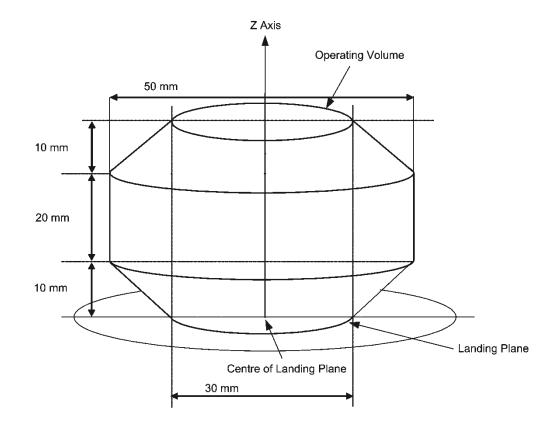

Objective

- Identify the interface area where the user should tap his card to trigger transaction.
- The symbol is taken as the reference position for the tests required for Type Approval.
- Only EMVCo compliant terminals can display the Contactless symbol in the market.

Requirements:

- The symbol has to be <u>visible</u> before and during the transaction process.
- It's not allowed to alter the drawing, arrangement or proportion of the elements of the symbol

Positioning conventions


- EMV uses the Contactless Symbol as a reference to define an operating volume for the tests.
- Depending on the test case, it can be evaluated in one or multiple positions.
- Positions are expressed with 3 numbers that represents the height, radius and angle.

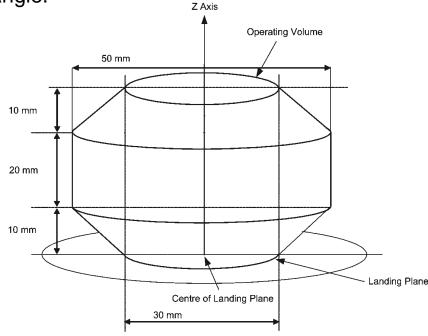
(z, r, φ)

z: height

r: radius

φ: angle

Positioning conventions


- EMV uses the Contactless Symbol as a reference to define an operating volume for the tests.
- Depending on the test case, it can be evaluated in one or multiple positions.
- Positions are expressed with 3 numbers that represents the height, radius and angle.

(z, r, φ)

z: height

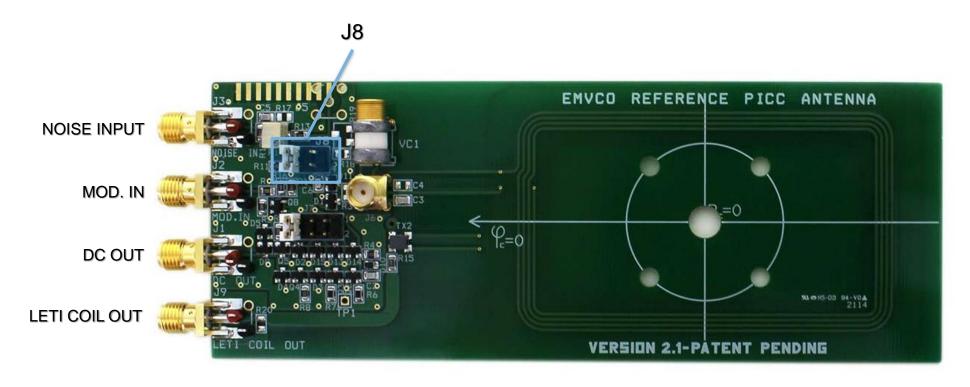
r: radius

φ: angle

Value of Coordinate z	Value of z Identifiers for Label Points
0 mm	0
10 mm	1
20 mm	2
30 mm	3
40 mm	4

Value of Coordinate r	Value of r Identifiers for Label Points
0 mm	0
15 mm	1
25 mm	2

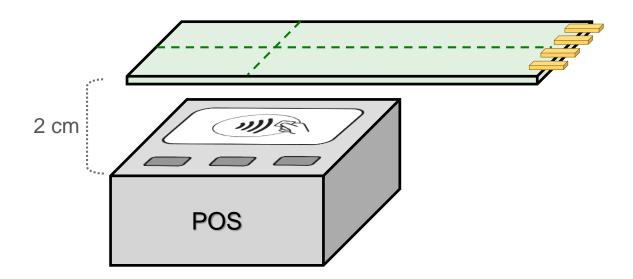
Value of Coordinate φ	Value of f Identifiers for Label Points
0	0
π/2	3
π	6
3π/2	9

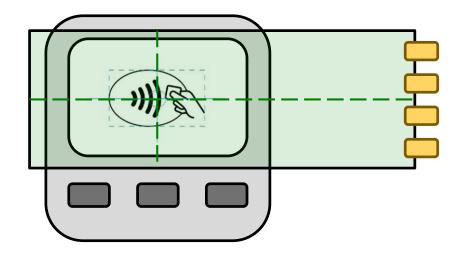


EMVCo Reference PICC

Definition

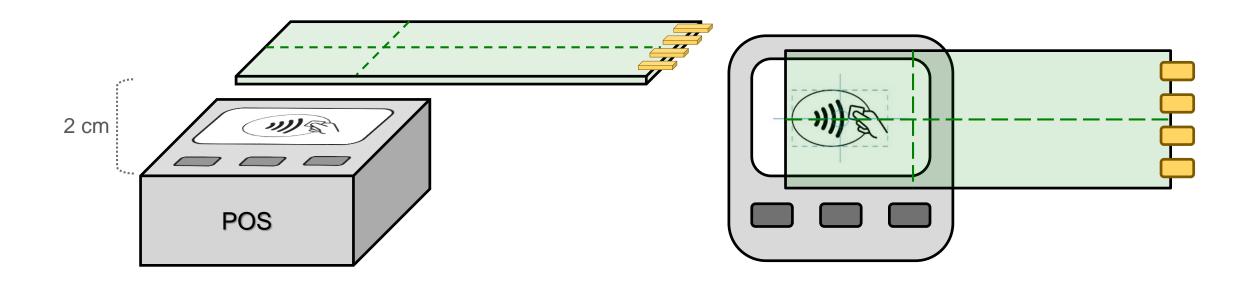
Reference antenna used to test contactless terminals. It allows us to measure the signal received from the POS and to simulate a PICC by injecting a modulated signal through one of its ports.



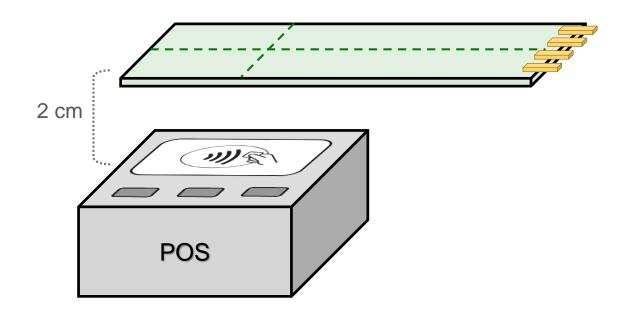


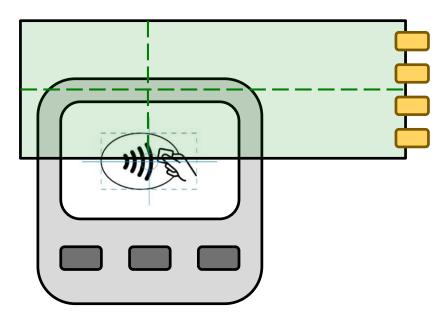
Positioning examples

Reference PICC position (2, 0, 0)



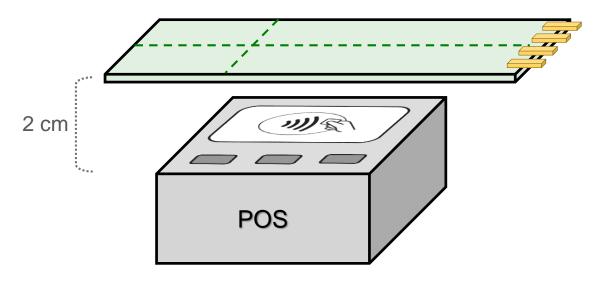
Positioning examples

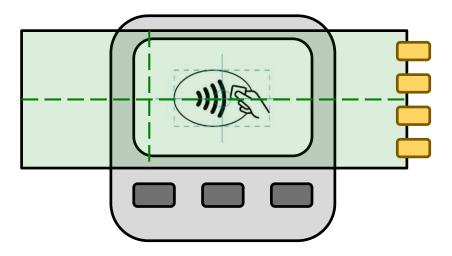

Reference PICC position (2, 2, 0)



Positioning examples

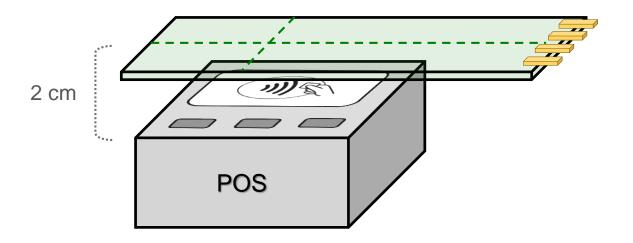
Reference PICC position (2, 2, 3)

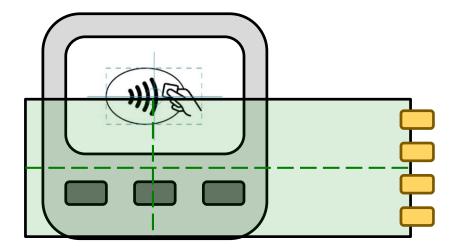




Positioning examples

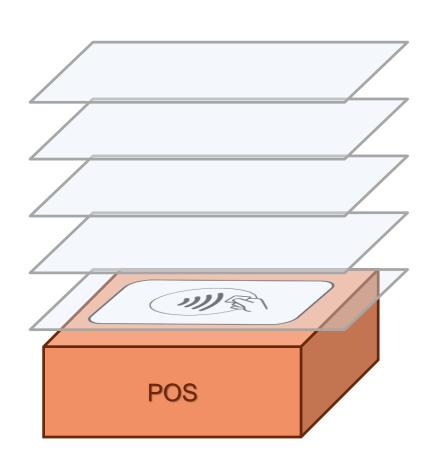
Reference PICC position (2, 2, 6)

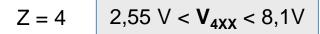




Positioning examples

Reference PICC position (2, 2, 9)





EMV Analog L1 Tests Power tests

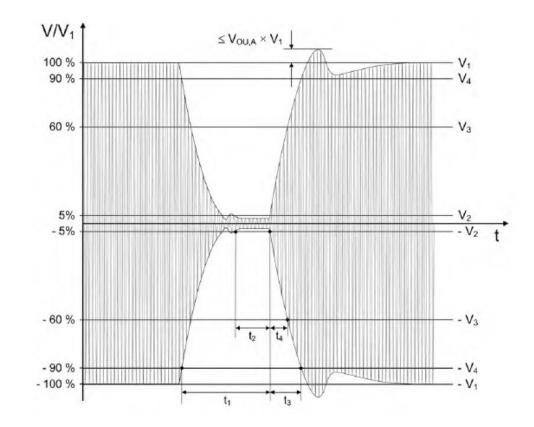
Power tests

$$Z = 3$$
 2,775 V < V_{3XX} < 8,1V

$$Z = 2$$
 3 V < V_{2XX} < 8,1V

$$Z = 1$$
 3,05 V < V_{1XX} < 8,1V

$$Z = 0$$
 3,1 V < V_{0XX} < 8,1V

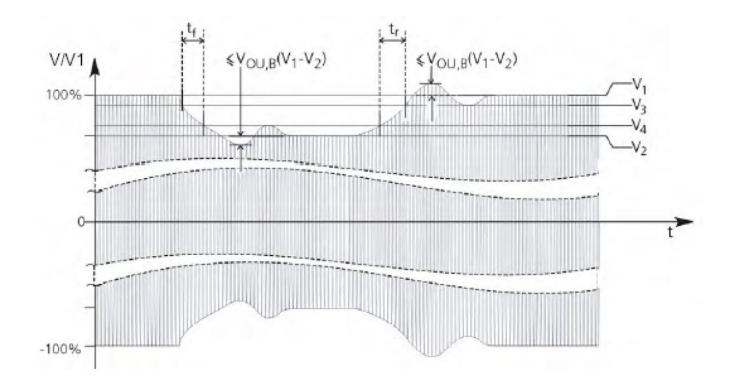

EMV Analog L1 Tests Waveform tests

Waveform tests

Type A:

- TA121: t₁
- TA122: Monotonic Decrease
- TA123: Ringing
- TA124: t₂
- TA125: t₃ and t₄
- TA127: Monotonic Increase
- TA128: Overshoot

EMVCo transactions are only performed at 106 kbps



Waveform tests

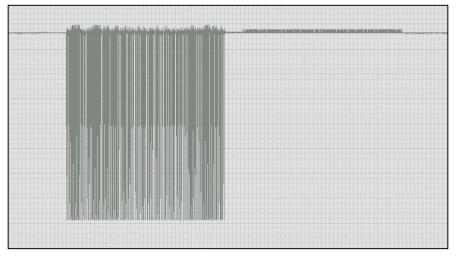
Type B:

- TB121: Modulation Index
- TB122: Fall time
- TB123: Rise time
- TB124: Monotonic Increase
- TB125: Monotonic Decrease
- TB126: Overshoots
- TB127: Undershoots

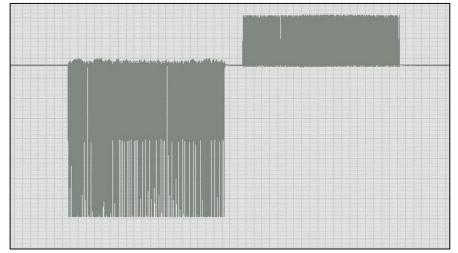
EMVCo transactions are only performed at 106 kbps

EMV Analog L1 Tests Communication tests

Communication tests


Purpose

Verify if the PCD communicates correctly depending on level and polarity of the PICC modulation


Tests performed:

- Tx131 Minimum positive modulation
- Tx133 Maximum positive modulation
- Tx135 Minimum negative modulation
- Tx137 Maximum negative modulation

Tx131 MinPos

Tx133 MaxPos

Other tests

General

TAB112 – Carrier frequency

TAB113 - Field resetting

TAB114 - Power-Off

TAB115 - Polling sequence

Type A

TA139 - FDTA PICC

TA141 - BitRate

TA142 - BitCodingPCD

TA143 - BitCodingPICC

Type B

TB141 - BitRate

TB142 - BitCodingPCD

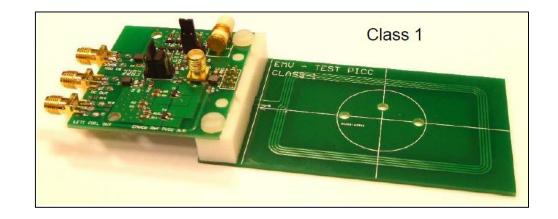
TB146 - BitCodingPICC

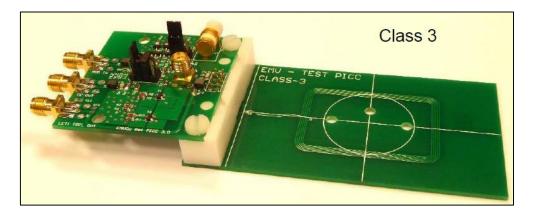
TB147 - BitBoundaries

TB145 - TFSOFF Max

TB148 - TFSOFF Min

EMV Contactless Specifications New in v3.0


EMV v3.0 Specifications

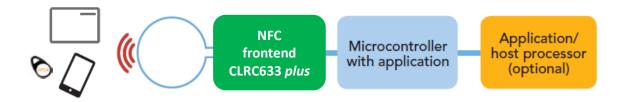

What's new?

There will be three EMV-TEST PICCs:

EMV-TEST PICC 1 (Class 1) Tuned to 16.1 MHz
EMV-TEST PICC 2 (Class 1) Tuned to 13.56 MHz
EMV-TEST PICC 3 (Class 3) Tuned to 13.56 MHz

- Different loads for PICCs → 2 different linear load instead of 1
- Waveshape test limits → Overshoot and undershoot are recalculated using NFC forum formulas.

NXP Product portfolio for POS



CLRC663 plus - push your design further

Best performance at lowest power consumption

- Full RF standard compliance
- High performance and more flexible antenna design
- EMVCo 2.6 ready (analog & digital compliance)
- Longer battery life: Power-saving modes and extended LPCD options.
- Industrial / Automotive temperature range (-40 °C 105° C)
- Multiple interfaces and support for high-security reader implementations
- Compact package (HVQFN32 with wettable flanks)

PN5180 - The best full NFC frontend in the market

- Multi-protocol and high RF performance
- Full NFC Forum and EMVCo compliant frontend
- Flexible low power card detection
- Efficient, robust and reliable operation even in harsh conditions
- Maximum interoperability for next generation of NFC phones
- Onboard Dynamic Power Control (DPC) for optimized RF performance
- Fast SPI host interface with optimized commands for use with 32-bit host controllers
- Small, industry-standard packages with BGA form factor for PCI compliancy

PN7462AU - The first all-in-one NFC solution

NFC and contact interfaces, MCU, and SW one chip

- Integrated Cortex-M0 microcontroller with customizable memory
- State of the art RF interface with EMVCo and NFC Forum compliance for easy certification
- DPC for optimized antenna performance
- Contact interface compliant with ISO/IEC 7816-2 to 4
- One configurable host interface: I2C, SPI, USB, HSUART
- Two master interfaces: I²C and SPI and 12 to 21 GPIOs
- Advanced power management
- HVQFN64 package (9x9 mm)

More support

NXP

Relevant resources regarding POS

Certification	NXP support	End customer
EMVCo L1 contact analog	Application notes; demo board; Report from test house Customer schematic validation	Final device need to be tested at a certified lab
EMVCo L1 contact digital	Application note; source code; ICS example; internal test report Support on NXP stack integration Support on EMV test suite errors	Final device need to be tested at a certified lab
EMVCo L2 contact	Link to partners for stack; Pre integration support if NXP L1 stack is used	Final device need to be tested at a certified lab

Certification	NXP support	End customer
EMVCo L1 contactless analog	Antenna design guide, loop back example; internal test report; demo board Antenna design support & RF support from CAS team	Final device need to be tested at a certified lab
EMVCo L1 contactless digital	Source code; application note ICS example; internal test report Support on NXP stack integration Support on EMV test suite errors	Final device need to be tested at a certified lab
EMVCo L2 contactless	Link to partners for stack ; Pre integration support if NXP L1 stack is used	Final device need to be tested at a certified lab

Mobile Knowledge Contact

We are your ideal **engineering consultant** for any specific support in connection with your **POS** developments.

If you want to:

- Design an EMV POS or mPOS
- Select the best performing antenna
- Optimize the RF performance of your device
- Debug your device to make sure it is EMV L1 compliant

Your trusted partner and expert design house for NFC technology

contact@themobileknowledge.com themobileknowledge.com

Get ahead with NXP's PN5180 Frontend - Design your POS terminal with EMVCo (L1) certification

Thank you for your kind attention!

Please remember to fill out our evaluation survey (pop-up)

Check your email for material download and on-demand video addresses

Please check NXP and MobileKnowledge websites for upcoming webinars and training sessions

http://www.nxp.com/support/classroom-training-events:CLASSROOM-TRAINING-EVENTS www.themobileknowledge.com/content/knowledge-catalog-0

MobileKnowledge

MobileKnowledge is a team of HW, SW and system engineers, experts in **smart, connected and secure** technologies for the IoT world. We are your ideal **engineering consultant** for any specific support in connection with your **IoT** and **NFC** developments. We design and develop secure HW systems, embedded FW, mobile phone and secure cloud applications.

Our services include:

- Secure hardware design
- Embedded software development
- NFC antenna design and evaluation
- NFC Wearable
- EMV L1 pre-certification support
- Mobile and cloud application development
- Secure e2e system design

www.themobileknowledge.com mk@themobileknowledge.com

We help companies leverage the secure IoT revolution

