
PUBLIC

JORDI JOFRE
NFC READERS

NFC EVERYWHERE
14/09/2017

WEBINAR SERIES:

NFC SOFTWARE INTEGRATION

HOW TO INTEGRATE NFC FRONTENDS IN LINUX

1

Agenda

NFC software integration webinar series

Session I, 14th September

How to integrate NFC frontends in Linux.

Session II, 28th September

How to integrate NFC controllers in Linux.

Session III, 11th October

How to port the NFC Reader Library to K64F.

2

Agenda

NFC software integration webinar series

Session I, 14th September

How to integrate NFC frontends in Linux.

► NFC readers software development design-in support.

► NFC Frontend concept.

► Linux OS architecture & NFC Reader Library

integration in Linux.

► Host interface latency analysis in Linux.

► Wrap up & Q&A.

3

NFC readers software development

design-in support

4

NXP’s software development support

NFC implementation process

NFC Reader Library

Sample code App notes

Online training on SW
integration & tutorials

NFC cockpit

You can re-use design of NXP development boards and sample code

examples to speed up your SW development tasks.

Design files for
development kits

5

NXP software support for integration into any platform

Connected NFC tags

Connected NFC

tag

NTAG I2C plus

NFC frontends

NFC controllers with integrated FW

NFC controllers with customizable FW

NFC

frontend

PN5180

NFC controller

with integrated

firmware

PN71xx

NFC controller with

application

PN7462

Software integration

Bare metal

RTOS

Linux OS

Other OS

This session covers topics related to NFC

frontend software integration in Linux

6

NFC Frontend concept

7

Host interface

• This register interface is a low level access

to the contactless interface providing full

access to this IP.

• This could be a direct CLIF-mapped

interface (CLRC663, PN512) or a software

emulated register interface (PN5180).

• The host controller uses the register

access to the contactless interface:

• to configure RF framing and

signaling .

• to finally transfer the RF digital

protocol based blocks to/from a

counterpart.

NFC frontend offers a host interface and a contactless interface

NFC frontends expose a ‘register interface’ towards

the host controller through the host interface

NFC frontend

H
o

s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

RF interface

• An NFC frontend is an RF transceiver

enabling the contactless communication.

• It deals with the signal modulation and

handles the data transmission through the RF

interface.

• The NFC frontend needs to be selected

according to application requirements:

• RF performance

• RF protocols

• NFC modes of operation

• Host interfaces

• Power consumption

• Device to interact with

• Others…

8

NFC frontend is controlled by the external host controller SW

NFC frontend

H
o

s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

Host controller

Host controller

M
a
tc

h
in

g

RF communication

• Contains the software implementing the

application logic

• The RF digital protocols are implemented

on the host controller

• The host controller platform needs to be

selected according to system requirements:

• Memory requirements

• Clock frequency

• MCU architecture

• Host interfaces

• Power consumption

• GPIOs and other peripherals

HW platform

Linux OS

The NFC Reader Library can be installed

on a generic GNU/Linux platform*

TODAY: NFC application runs on Linux OS system

*Support on Raspberry Pi platform provided as reference.

NFC

application

Register configs

The host controller drives and controls the NFC

frontend according to register settings configuration

9

Linux OS architecture

10

Host controller SW: Linux OS architecture - User space

Host controller

Linux OS

stack

H
o

s
t

in
te

rf
a
c
e

HW platform

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

System Libraries

App 1 App 2 App 3 App n

GNU C

Library

DRM

Library
Other libs

• Applications and user programs run in User

Space (non-privileged mode).

• User Space code has no ability to access

hardware or drivers directly.

• Due to the protection afforded by this sort of

isolation, crashes in user mode are always

recoverable.

• User space process occupies its own virtual

address space

User Space

11

Host controller SW: Linux OS architecture - Kernel space

Host controller

Linux OS

stack

HW platform

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
SPI driver I2C driver

• The kernel connects the application software

to the hardware platform.

• The executing code has complete and

unrestricted access to the underlying

hardware.

• Kernel mode is generally reserved for the

lowest-level, most trusted functions of the

operating system

• Kernel Mode "prevents" User Mode

applications from damaging the system or its

features  Crashes in kernel mode are

catastrophic.

• Kernel space runs on the single address

space.

Kernel Space

H
o

s
t

in
te

rf
a
c
e

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

12

Host controller SW: Linux OS architecture – System call interface

Host controller

Linux OS

stack

HW platform

• Provides the means to perform function calls

from user space into the kernel space

• Code running in user mode must delegate to

system call APIs to access hardware or

memory.

• Most operations interacting with the system

require permissions unavailable to a user

level process (e.g. Input / Output operations)

• Input/output (I/O) is any program, operation or

device that transfers data to or from the CPU

and to or from a peripheral device

System call interface

H
o

s
t

in
te

rf
a
c
e

Syscall Interface

Syscall Dispatcher
K

e
rn

e
l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

13

Integrating the

NFC Reader Library in Linux

14

NFC Reader Library: The SW stack for developing NFC applications

Host controller

Linux OS

stack

H
o

s
t

in
te

rf
a
c
e

HW platform

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
SPI driver I2C driver

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

NFC Reader Library SW integration

• The NFC Reader Library provides an API,

including everything you need to deploy for

NFC applications:

• Host platform drivers

• RF digital protocols

• Full feature set according to NFC Forum

• NXP NFC frontends hardware drivers

• MIFARE® product-based cards and

 NFC Forum tag operation

• The NFC Reader Library runs within the User

Space.

• The customer NFC app is built on top of the

NFC Reader Library, taking advantage of the

offered API

The NFC Reader Library is the NXP software stack to develop NFC

applications and there is an existing version for Linux OS architecture!

15

NFC Reader Library support for multiple products and platforms

NFC Reader Library

Info and more information: www.nxp.com/pages/:NFC-READER-LIBRARY

The NFC Reader Library is everything you need to create your

own software stack and application for a contactless reader

Supported products:*

• CLRC663 plus
• PN5180
• PN7462AU

Supported platforms:*

• LPC1769
• FRDM-K82F

• Raspberry Pi Model 3  Linux
• … and portable to other MCUs and

platforms.

Supported dev boards:*

• CLEV6630B
• PNEV5180B
• PNEV7462B

http://www.nxp.com/pages/:NFC-READER-LIBRARY

16

NFC Reader Library support for Linux

11 software examples available to

be tested and re-used in Linux

HAL is platform independent, so

NXP NFC readers can be used in

Linux as it is without any adaptation

AL and PAL layers are hardware

and platform independent, so they

can be used in Linux as they are

without any adaptation

The software examples can be

imported and run in Raspberry Pi &

Linux without any adaptation.

Support for other platforms requires

adaptations in OSAL and DAL.

17

NFC Reader Library - building the SW stack for Linux

Macros used in OSAL to enable Linux OS

#ifdef PHOSAL_LINUX
include “../src/Linux/phOsal_Linux.h”

Comment / uncomment the specific macro defined
for including / excluding each SW component. E.g.

#define NXPBUILD__PHPAL_I14443P3A_SW
#define NXPBUILD__PHPAL_I14443P3B_SW
#define NXPBUILD__PHPAL_I14443P4A_SW
#define NXPBUILD__PHPAL_I14443P4_SW
#define NXPBUILD__PHPAL_MIFARE_SW
#define NXPBUILD__PHPAL_FELICA_SW

Macros used in DAL to enable Raspberry Pi
platform for PN5180 and CLRC663

#ifdef PHDRIVER_PIPN5180_BOARD
include <Board_PiPn5180.h>
#endif

#ifdef PHDRIVER_PIRC663_BOARD
include <Board_PiRc663.h>
#endif

18

Host interface access on Linux

systems

19

Linux based application: System call interface

Host controller

Linux OS

stack

HW platform

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

NFC

frontend

H
o

s
t

in
te

rf
a
c
e

The NFC application needs to switch from User

Space to Kernel Space for every SPI interface access

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

s
y
s
te

m
 c

a
ll

fu
n

c
ti
o

n
 c

a
ll

A system call leads to a so-called

context switch. This context switch

changes the execution context from

user space to kernel space

20

Transition between User mode and Kernel mode

User

application
System Call

System

Call API

Triggered soft

interrupt

Interrupt vector

table

Address SWI

routine

IVT do the

necessary

steps

Kernel

mode

Switching from User mode to Kernel mode
Advantage:

• Well-defined interface.

• Horizontal separation: Avoids a crashing

application crashing the whole system and protects

system resources.

• User application initiates switching to kernel mode making a system call

(e.g. open, read, write, etc)

• A software interrupt (SWI) is triggered

• The interrupt vector table launches the handler routine which performs

all the required steps to switch the user application to kernel mode

• Start execution of kernel instructions on behalf of the user process.

Disadvantage:

• Performance degradation: A system call is much

slower than a direct function call

Could challenge the design of

time-critical NFC applications

21

Latency analysis:

Linux vs bare metal

22

Hardware setup

PN5180
H

o
s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

Raspberry

Pi

M
a
tc

h
in

g

PN5180

H
o

s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

LPC 1769

M
a
tc

h
in

g

Linux hardware platform

▪ Raspberry Pi 3 Model B

▪ 1.2 GHz 64-bit quad-core ARMv8 CPU

❖Limited to 1 Core @ 100 MHz (3 cores disabled)

▪ 1 GB RAM

▪ PNEV5180B (with LPC bypassed)

▪ SPI host interface

Bare metal hardware platform

▪ NXP LPC1769 uC

▪ ARM 1 core @ 96 MHz

▪ LPC-Link2 connected for debugging

▪ PNEV5180B

▪ SPI host interface

We limited Raspberry Pi clock and MCU cores to

achieve a comparable setup with LPC1769

Bare metal setupLinux setup

23

Software setup

PN5180
H

o
s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

Raspberry

Pi

M
a
tc

h
in

g

PN5180

H
o

s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

LPC 1769

M
a
tc

h
in

g

Bare metal setupLinux setup

ARMv8 CPU

Raspbian Jessie

Kernel 4.4

NFC Reader Library

EMVCo polling example

NXP LPC1769

NFC Reader Library

EMVCo polling example

We execute the NFC

Reader Library and the

same SW example in

both platforms

EMVCo polling example:

Discovery loop for EMVCo

card detection and APDU

command exchange

24

Measurement setup

PN5180
H

o
s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

Raspberry

Pi

M
a
tc

h
in

g

PN5180

H
o

s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

LPC 1769

M
a
tc

h
in

g

Bare metal setupLinux setup

Logical analyzer / scope Logical analyzer / scope

Perform transaction RF communication Perform transaction RF communication

Measurements conducted

▪Time from GPIO toggle to SPI transfer

▪Time between two SPI accesses

▪Time for EMVCo polling initialization

▪Time for EMVCo PPSE transaction

We compared the results in

the following slides

We use a logical analyzer /

scope connected in the SPI

interface between the Host

controller & PN5180

We use a logical analyzer /

scope connected in the SPI

interface between the Host

controller & PN5180

25

Measured time from GPIO toggle to SPI transfer

Bare metal setupLinux setup

* GPIO toggling execution takes less than 350us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. Set_GPIO(Low);

* GPIO toggling execution takes less than 3us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. Set_GPIO(Low);

Until we start writing into the SPI

interface, it takes 0.478 ms
Until we start writing into the

SPI interface, it takes 2.5 us

* Pseudo-code extracted from the real EMVCo polling source code

example from the NFC Reader Library

Linux setup is ~ 200x times

slower than bare metal setup

26

Measured time between two SPI accesses

Bare metal setupLinux setup

it takes 1.8 ms until we start

writing the second SPI transfer.
It takes 74.5us until we start

writing the second SPI transfer.

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. phhalHw_PN5180_WriteRegister(…);

4. Set_GPIO(Low);

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. phhalHw_PN5180_WriteRegister(…);

4. Set_GPIO(Low);

* Pseudo-code extracted from the real

EMVCo polling source code example from

the NFC Reader Library
Linux setup is ~ 25x times slower

than bare metal setup

27

Measured time for EMVCo polling initialization

* During the initialization, several registers are written.

The process is repeated 10 times to get an average

Measured time for 10

EMVCo polling inits.

1 init ~30.1ms

Measured time for 10

EMVCo polling inits.

1 init ~8.07 ms

Bare metal setupLinux setup

Linux setup is ~ 4x times slower

than bare metal setup

28

Measured time for EMVCo PPSE

Bare metal setupLinux setup

Measured time for a

EMVCo loopback

transaction takes

57ms

Measured time for a

EMVCo loopback

transaction takes

32ms

*phStatus EMVCoDataLoopBack(…){

1. Set_GPIO(High);

2. EMVCoDataExchange(…);

3. Set_GPIO(Low);

* Pseudo-code extracted from the real

EMVCo polling source code example from

the NFC Reader Library

Linux setup is ~ 2x times slower

than bare metal setup

29

Overcoming Linux higher latency for

time-sensitive applications

30

Recommendations to reduce Linux latency

NFC

frontend

H
o

s
t

in
te

rf
a
c
e

R
F

 i
n

te
rf

a
c
e

Host controller

M
a
tc

h
in

g

Linux-based NFC reader architecture

Linux OS stack

HW platform

• High latency: Access the SPI driver in

Kernel space is slow.

• High CPU load: There is a lot of code

involved just to write one register.

Solutions

• Increase CPU/SPI clock as much as the MCU can

process.

• Reduce SPI / host interface interactions as much as

possible: Linux driver is optimized for few long

transactions rather than lots of short ones

• Move NFC Reader Library BAL module to

Kernel spaceThe most effective solution!!

31

NFC Reader Library support of BAL module in Kernel space

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend NFC frontend

Linux architecture Linux architecture

Option 1: Default NFC Reader Library

integration in Linux with all lib in user space

Option 2: NFC Reader Library integration

in Linux with BAL module in kernel space

32

NFC Reader Library BAL module: User Space vs Kernel space

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend

Linux architecture

1. Read GPIO to wait for BUSY line from

previous command going low.

2. Setup and start first SPI transfer.

3. Read GPIO to wait for BUSY going

low.

4. Setup and start second SPI transfer.

5.

BAL layer in User Space

1. System call read() leading to a context

switch

2. Access BAL kernel module with direct

access to the SPI and GPIO

frameworks.

BAL layer in Kernel Space

ONLY ONE SYSTEM

CALL  Much more

efficient, instead of

having individual

access from user

space

Plenty of system

calls and context

switching operations

33

NFC Reader Library BAL module: User Space vs Kernel space

BAL layer in Kernel Space: Measured time between two SPI transfers (Raspberry Pi 2 running Linux OS*)

Until we start

writing into the

SPI interface, it

takes 2us

Until we start

writing into the

SPI interface, it

takes 86us

BAL layer in User Space: Measured time between two SPI transfers (Raspberry Pi 2 running Linux OS*)

*This setup was conducted with Raspberry Pi 2, 1GHz Quad core Cortex-A7 at full power. Measurements are not comparable with the above sections.

BAL in Kernel space is ~ 40x times faster

34

NFC Reader Library BAL module in Kernel space: Resources

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend

Linux architecture

[1] GitHub repo with:

• Information about building, configuring and loading the

module

• An example of the integration on Raspberry Pi.

[2] http://www.nxp.com/documents/application_note/AN11802.pdf

[2] App note with:

• Explanation of how the NFC Reader Library needs to be

changed in order to call the kernel module instead of using

the default BAL module running in user-space.

[1] https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

http://www.nxp.com/documents/application_note/AN11802.pdf
https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

35

Wrap up & Q&A

36

Reference links & info

• NFC Reader Library
www.nxp.com/pages/:NFC-READER-LIBRARY

• CLRC663 plus
www.nxp.com/products/:CLRC66303HN

• PN5180
www.nxp.com/products/:PN5180

• Github Repo:
https://github.com/NXPNFCLinux/nxprdlib-kernel-
bal

• NFC Reader Library for Linux installation guidelines
http://www.nxp.com/documents/application_note/A
N11802.pdf

http://www.nxp.com/pages/:NFC-READER-LIBRARY
http://www.nxp.com/products/:CLRC66303HN
http://www.nxp.com/products/:PN5180
https://github.com/NXPNFCLinux/nxprdlib-kernel-bal
http://www.nxp.com/documents/application_note/AN11802.pdf

37

MIFARE® product-based applications

End-to-end systems, readers and card-related designs

EMVco applications

Readers, cards, design for test compliancy (including PCI)

Secure Element management

GlobalPlatform compliant backend solutions

Secure services provisioning OTA, TSM services

Software development in Android and iOS

Embedded software for MCUs

JCOP, Java Card operating Systems

Hardware design and development

Digital, analog, sensor acquisition, power management

Wireless communications WiFi, ZigBee, Bluetooth, BLE

Contactless antenna RF design, evaluation and testing

We help companies leverage the mobile

and contactless revolution

MobileKnowledge

Roc Boronat 117, P3M3

08018 Barcelona

(Spain)

Get in touch with us

www.themobileknowledge.com

mk@themobileknowledge.com

https://www.google.es/maps/place/MobileKnowledge/@41.402408,2.1926513,17z/data=!3m1!4b1!4m2!3m1!1s0x12a4a33d3b71de05:0xcb1b84b268066826
http://www.themobileknowledge.com/
mailto:mk@themobileknowledge.com

38

Thank you for your kind attention!

Please remember to fill out our evaluation survey (pop-up)

Check your email for material download and on-demand video

addresses

Please check NXP and MobileKnowledge websites for upcoming

webinars and training sessions

http://www.nxp.com/support/classroom-training-events:CLASSROOM-TRAINING-EVENTS

www.themobileknowledge.com/content/knowledge-catalog-0

Jordi Jofre (Speaker)

Angela Gemio (Host)

How to integrate NFC frontends

in Linux

http://www.nxp.com/support/classroom-training-events:CLASSROOM-TRAINING-EVENTS
http://www.themobileknowledge.com/content/knowledge-catalog-0

