HOW TO INTEGRATE NFC FRONTENDS IN LINUX

WEBINAR SERIES:
NFC SOFTWARE INTEGRATION

JORDI JOFRE

NFC READERS

NFC EVERYWHERE
14/09/2017

SECURE CONNECTIONS
FOR A SMARTER WORLD

PUBLIC

Agenda

NFC software integration webinar series

Session |, 14th September
How to integrate NFC frontends in Linux.

Session I, 28th September
How to integrate NFC controllers in Linux.

Session lll, 11th October
How to port the NFC Reader Library to K64F.

NX

Agenda

NFC software integration webinar series

Session |, 14th September
How to integrate NFC frontends in Linux.

» NFC readers software development design-in support.
» NFC Frontend concepit.

» Linux OS architecture & NFC Reader Library
integration in Linux.

» Host interface latency analysis in Linux.
» Wrap up & Q&A.

NFC readers software development
design-in support

NXP’s software development support

NFC implementation process

Decide the Select Evaluate Hardware Software Test & Get
functionality IC features design _.. development ..__debug certified

NFC Reader Library @ Design files for
development Kits
@ Sample code App notes
- Online training on SW
AMESEEfel @ Integration & tutorials

You can re-use design of NXP development boards and sample code
examples to speed up your SW development tasks.

w Mdt.)ile .
4 Knowledge

NXP software support for integration into any platform

Connected NFC tags AT
Field detection g . g B are m etal

Connected NFC - T - /,“

0)))0: NTAGtallgc plus e —. \\ — ///

// bbb \\

NFC frontends

IjE | RTOS

\\\u T I //
/ N - \
5 | Linux OS

"' — | Other 0S

NFC
(e Microcontroller
60 with aj pplcalmn
PN5180

[NFC controllers with integrated FW

NFC controller
with |megrated NCI

b ((firmware
PN71xx

Software integration
NFC controllers with customizable FW & |)

NFC controllef rwnh

ppl catio
PN7462

g €
This session covers topics related to NFC

frontend software integration in Linux
5 m’\:&?edg-e

NFC Frontend concept

NFC frontend offers a host interface and a contactless interface

~— Host interface N ~— RF interface N
 This register interface is a low level access * An NI_:C frontend is an RF transce_ivef
to the contactless interface providing full enabling the contactless communication.

access to this IP.

* It deals with the signal modulation and
handles the data transmission through the RF
interface.

» This could be a direct CLIF-mapped
interface (CLRC663, PN512) or a software

emulated register interface (PN5180).
« The NFC frontend needs to be selected

according to application requirements:
* RF performance
* RF protocols
* NFC modes of operation
* Host interfaces
* Power consumption
» Device to interact with
* Others...

RF interface
|

* The host controller uses the register
access to the contactless interface:
* to configure RF framing and
signaling .
* to finally transfer the RF digital
protocol based blocks to/from a
counterpart.

Host interface

NFC frontends expose a ‘register interface’ towards
the host controller through the host interface

_.t..
R Mobile °.
7 Knowledge m

NFC frontend is controlled by the external host controller SW

~— Host controller N
The host controller drives and controls the NFC

» Contains the software implementing the frontend according to register settings configuration
application logic

* The RF digital protocols are implemented Host controller
on the host controller Register configs RF communication
NFC 3
 The host controller platform needs to be application 9 5)))
selected according to system requirements: _ E I=
* Memory requirements Linux OS @ n
o
» Clock frequency L
* MCU architecture HW platform
* Host interfaces r

* Power consumption
» GPIOs and other peripherals

TODAY: NFC application runs on Linux OS system

- J -

The NFC Reader Library can be installed
on a generic GNU/Linux platform*

*Support on Raspberry Pi platform provided as reference.

_.t..
R Mobile °.
8 Knowledge m

Linux OS architecture

Host controller SW: Linux OS architecture - User space

Host controller

Linux OS

stack

HW platform

AT Training BESANN

Host interface

-
-
-
-

User Space

Kernel Space

App 1 ‘ App 2 App 3 ‘ Appn

System Libraries
GNU C DRM :

Syscall Dispatcher

User Space

Applications and user programs run in User
Space (non-privileged mode).

User Space code has no ability to access
hardware or drivers directly.

Due to the protection afforded by this sort of
isolation, crashes in user mode are always
recoverable.

User space process occupies its own virtual
address space

Host controller SW: Linux OS architecture - Kernel space

11

Host controller

Linux OS
stack

HW platform

W Mobile °.
Knowledge

Host interface

T ™
Kernel Space
t App1 App2 App3 P * The kernel connects the application software
" to the hardware platform.
4
@ Tt » The executing code has complete and
§ unrestricted access to the underlying
hardware.
N '"""""'""""'S');:a'”TD'i'S';;t;h'e:“““"““"“" » Kernel mode is generally reser_/ed for the
lowest-level, most trusted functions of the
° Generic Kernel Operating System
n scheduler manager System Stack + Kernel Mode "prevents" User Mode
2 applications from damaging the system or its
E features - Crashes in kernel mode are
USB driver [I)lei?/leary SPI driver 12C driver catastrophlc.
« Kernel space runs on the single address
space.
N J

Host controller SW: Linux OS architecture — System call interface

e _ N\
System call interface

A . . .
App 1 App 2 App 3 App_n Provides the means to perform function calls
9 from user space into the kernel space
:]
wn ° i i
Host controller & Gharad librasios Code running in user mode must delegate to
o § system call APIs to access hardware or
@ memory.
T
Linux OS -
— Syscall Dispatcher . . .
o require permissions unavailable to a user
2 level process (e.g. Input / Output operations)
HW platform Generic Kernel . .
* Input/output (I/O) is any program, operation or

device that transfers data to or from the CPU
and to or from a peripheral device

Kernel Space

_.t..
e Mobile .
PR T [m

Integrating the
NFC Reader Library in Linux

NFC Reader Library: The SW stack for developing NFC applications

e Y
NFC Reader Library SW integration
t App 1 App 2 App 3 * The NFC Reader Library provides an AP,
- including everything you need to deploy for
é System Libraries NFC applications:
Host controller - GNUC DRM NFC Reader * Host platform drivers
o § Library Library library « RF digital protocols
§ Full feature set according to NFC Forum
Linux OS) * NXP NFC frontends hardware drivers
— = — L L 1 1 1 t 1 1 3 1 1 1 t 1 1 3 1 1 % & 1 1 % 1 1 ¢ ® 1 1 3 1 1 3 § 1 I % 1 1 ¥ & 1 1 Y I I] Y ® -
stack = Syscall Dispatoher MIFARE® product base_d cards and
7 NFC Forum tag operation
% Generic Kernel
HW platform Process Memory Virtual Eile Network « The NFC Reader Library runs within the User
scheduler manager System Stack Space.

Kernel Space

* The customer NFC app is built on top of the
NFC Reader Library, taking advantage of the

. Display g 3
UsBidiisier Driver SPidriver [[2C driver offered AP

~
~
~
~
~
~
~
~
~
~

The NFC Reader Library is the NXP software stack to develop NFC
PR Training [FEr AN applications and there is an existing version for Linux OS architecture! m

NFC Reader Library support for multiple products and platforms

~— NFC Reader Library ~

Supported products:*

]

Demo apps Compliance apps Demo apps on

Simpliied APl ¢ F
Basic NFC Forum | MIFARE Classic | ISONEC 15693 | EMVCo poling | Host Card | NTAGI2C ISOMEC 10373 | | EMVCoLoop || | 15O Profie Ref g ° C L R C 6 6 3 p I us
o DiscoveryLoop | DiscoveryLoop application demo Emu, TAT demo FCD back app for App E
2 \ppli \pp application | Application | application application Compliarice
= =
fied

 PN5180
« PN7462AU

HCE

Layer

SNEP 1.0
TAT-A LLCP 1.1
Sw

Sw
ISONEC
18000 3m3

o

uey QI

eyl OS]

Jewel/ NFC | ICode | ISOMEG

Discovery
Loop

WIFARE | ISOlEC Felca IsolEc | IsoiEc | 1sonEc
14443 | complant |18002 Iniator | 18002 Target | 15693
4mC protocol

o sw | S v o v

{fued 'ouo)

g g
‘ SInIL || WO ” Bueldiig H whgeldhin || LiEatt "
; g

OSAL Interfaces
MNULL OS

Supported dev boards:*

« CLEV6630B
« PNEV5180B
« PNEV7462B

J8feT)

ISOMEC ISONEC ISOMEC ISOMEC
14443 14443 14443
4

14443
A Jewel

g,; -

Free
RTOS

Generic

PN5180 RCEE3 PNT462AU

phDriver

Supported platforms:*

« LPC1769
« FRDM-K82F
LPCOpen KSDK 2x REsptomes ° RaSpberry P| |\/|Od€| 3 9 Linux

- . - g * ... and portable to other MCUs and
Info and more information:
platforms.

BAL (Bus Abstraction Layer) - Interfaces GPIO (General Purpose Input Output) Layer - Interfaces Timer Abstraction Layer - Interfaces

Lo, The NFC Reader Library is everything you need to create your x
15 BRI Krowteoe own software stack and application for a contactless reader

http://www.nxp.com/pages/:NFC-READER-LIBRARY

NFC Reader Library support for Linux

. Sw | s

S Sw Sw

OSAL Interfaces
MULL OS

ISOIIEC
14443
3A S Jewel

ISOMEC
14443
38

ISOIEC
14443
4A

ISOMEC
14443
4

MIFARE

S Sw

Siub Sw

Free
RTOS

Generic

RCEE3

PN5180

PN7462AU

ISNEC
14443
4mC

Demo apps
Basic Advanced MNFC Forum | MIFARE Classic | ISO/AEC 15683 | EMVCo polling | HostCard | NTAG 12C
» DiscoveryLoop | Discoveryloop deime application application demo Emu, T4T demo
E Application Application Application application Application | application
- —_—
AL (Application Layer) - Commandsets
IMIFARE | MIFARE Part of Partof | Jewell NFC ICode | ISQVIEC
Classic | Ultralight, MIFARE FeliCa | Topaz |Forum Tag 18000
EV1 DESFire EV1 | Cmd sat aperations 3m3 Discovery
Cmds Loop

Sw

ISOHIEC
18082 Initiator

ISQNEC
18082 Target

ISONEC
15693

Compliance apps Demo apps on

Simplified API
ISONEC 10373 EMVCo Loop 180 Profile Ref
PCD back app for App
application Compliance

Simplified API

SNEP 1.0

S

LLCP 1.1

Sw

ISONEC
18000 3m3

BAL (Bus Abstraction Layer) - Interfaces

phDriver

GPIO (General Purpose Input Output) Layer - Interfaces

The software examples can be

imported and run in Raspberry Pi &

RasphermyPi
Linux3P1

Linux without any adaptation.

Support for other platforms requires
adaptations in OSAL and DAL.

Timer Abstraction Layer - Interfaces

11 software examples available to
be tested and re-used in Linux

AL and PAL layers are hardware
and platform _independent, so they
can be used in Linux as they are
without any adaptation

TUER QID
-EFFF LOSI

HAL is platform _independent, so
NXP NFC readers can be used in

Linux as it is without any adaptation

WON

SRNINL

NFC Reader Library - building the SW stack for Linux

Macros used in OSAL to enable Linux 0S

#ifdef PHOSAL_LINUX
include “../src/Linux/phOsal_Linux.h”

Liriux

MMIFARE | MIFARE Part of Part of
Classic | Ultralight, MIFARE FeliCa
DESFire EV1 | Cmd st

NFC
Topaz |Forum Tag
aperations

ICode | ISOVIEC
18000

3m3

OSAL Intarfaces
MULL OS

HCE Sl
Layer | snepip
’—\ -

$0
Lk
phDriver
BAL (Bus Abstraction Layer) - Interfaces GPI0 (General Purpose Input Output) Layer - Interfaces Timer Abstraction Layer - Interfaces
RaspbermyPi
LPCOpen KSDK 2.x LinuxSFI
17 Knowledge

Comment / uncomment the specific macro defined
for including / excluding each SW component. E.g.

#define NXPBUILD__PHPAL_I14443P3A_SW
#define NXPBUILD__PHPAL_I14443P3B_SW
#define NXPBUILD__PHPAL_I14443P4A_SW
#define NXPBUILD__PHPAL_I14443P4_SW
#define NXPBUILD__PHPAL_MIFARE_SW
#define NXPBUILD__PHPAL_FELICA_SW

Macros used in DAL to enable Raspberry Pi
platform for PN5180 and CLRC663

#ifdef PHDRIVER_PIPN51860_BOARD
include <Board_PiPn5180.h>
#endif

#ifdef PHDRIVER_PIRC663_BOARD
include <Board_PiRc663.h>
#endif

h
>N

Host Interface access on Linux
systems

Linux based application: System call interface

T ™
= App 1 App 2 App 3
(&)
: @
o
S < System Libraries
U —
Host controller S GNUC DRM NFC Reader K A system call leads to a so-called
g Library Library library = context switch. This context switch
2 changes the execution context from
Linux OS) user space to kernel space
stack Syscall Dispatcher
Generic Kernel
)
HW platform % Process Memory Virtual File Net [rk
(% scheduler manager System Stif <
X =
. Display . . Q)
USB driver Driver [2C driver SPI driver =))
v »
o
. L
AN J

The NFC application needs to switch from User
T IRl Trining [ALSr A Space to Kernel Space for every SPI interface access m

Transition between User mode and Kernel mode

Switching from User mode to Kernel mode

User System Triggered soft
application S el Call API interrupt

Kernel W & e Address SWI Interrupt vector
necessary ,
mode routine table
steps

» User application initiates switching to kernel mode making a system call
(e.g. open, read, write, etc)

* A software interrupt (SWI) is triggered

» The interrupt vector table launches the handler routine which performs
all the required steps to switch the user application to kernel mode

« Start execution of kernel instructions on behalf of the user process.

— Mobile
20 Knou!vledge

Advantage:

» Well-defined interface.
 Horizontal separation: Avoids a crashing

application crashing the whole system and protects
system resources.

Disadvantage:

» Performance degradation: A system call is much
slower than a direct function call

Could challenge the design of
time-critical NFC applications

NX

Latency analysis:
Linux vs bare metal

Hardware setup

— Linux hardware platform

22

Linux setup

Raspberry
Pi

Host interface
RF interface
|

Matching

- Raspberry Pi 3 Model B
» 1.2 GHz 64-bit quad-core ARMv8 CPU
+Limited to 1 Core @ 100 MHz (3 cores disabled)
- 1 GB RAM
- PNEV5180B (with LPC bypassed)
» SPI host interface

Bare metal setup

LPC 1769 —

Host interface

RF interface

Matching

— Bare metal hardware platform

« NXP LPC1769 uC
- ARM 1 core @ 96 MHz

- LPC-Link2 connected for debugging

- PNEV5180B
= SPI host interface

We limited Raspberry Pi clock and MCU cores to
achieve a comparable setup with LPC1769

R Mobile °.
Knowledge

Software setup

Linux setup Bare metal setup

|
1
|
|
1
1
|
(0] 1 (0]
(&) Qo O o
: g g | £ i N
FER DU S g — § i LPC 1769 — £ g — 5
£ = = © : = £ T
» L = : 7 LL =
T o ! 2 o
_______ | .- BRREETUNN
___________ | IRRREETN T
___________ [Tl T
-~ — s =
We execute the NFC
EMVCo polling example Reader Library and the
same SW example in
NFC Reader Library both platforms EMVCo polling example
:
Raspbian Jessi . .
ool aa EMVCo polling example: NFC Reader Library
Discovery loop for EMVCo
T p— card detection and APDU B LRI
command exchange
k J k J

1
LT 1
~— ybi “ I
S - (R

Measurement setup

Linux setup

Perform transaction

Raspberry
Pi

—— Host interf

Logical analyzer / scope

/

We use a logical analyzer /
scope connected in the SPI
interface between the Host
controller & PN5180

T - (S

RF communication

Matchin

LPC 1769 —

RF interfa

Logical anal

Measurements conducted

- Time from GPIO toggle to SPI transfer
- Time between two SPI accesses

- Time for EMVCo polling initialization

- Time for EMVCo PPSE transaction

— Host interf

Bare metal setup

Perform transaction RF communication

Matchin

RF interfa

yzer / scope

\

We use a logical analyzer /
scope connected in the SPI
interface between the Host
controller & PN5180

We compared the results in
the following slides

Measured time from GPIO toggle to SPI transfer

Linux setup Bare metal setup

0x00 0x28 0x00 0x00 0x00 0x00

DXFF DXFF DXFF DXFF DXFF DXFF

Until we start writing into the
SPI interface, it takes 2.5 us

Until we start writing into the SPI
interface, it takes 0.478 ms

1. Set GPIO(High) *;
2. phhalHw PN5180 WriteRegister (..);
3. Set GPIO (Low);

1. Set GPIO (High) *;
2. phhalHw PN5180 WriteRegister (..);
3. Set GPIO(Low);

* Pseudo-code extracted from the real EMVCo polling source code
example from the NFC Reader Library
* GPIO toggling execution takes less than 350us

|
I
|
I
|
I
I
I
I
I
I
I
I
I
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
I
I
: * GPIO toggling execution takes less than 3us

h
2

Linux setup is ~ 200x times

25 Knowledge
slower than bare metal setup

Measured time between two SPI| accesses

Linux setup Bare metal setup

it takes 1.8 ms until we start
writing the second SPI transfer.

It takes 74.5us until we start
writing the second SPI transfer.

Set GPIO(High) *;

. phhalHw PN5180 WriteRegister (..);
. phhalHw PN5180 WriteRegister(..);
Set GPIO (Low);

Set GPIO (High) *;

. phhalHw PN5180 WriteRegister(..);
. phhalHw PN5180 WriteRegister(..);
Set GPIO (Low) ;

1. 1.
2 2
3 3
4. 4.

* Pseudo-code extracted from the real
EMVCo polling source code example from Linux setup IS ~ 25x times slower

the NFC Reader Library than bare metal setup

h
>N

Measured time for EMVCo polling initialization

Linux setup

Bare metal setup

KEYSIGHT KEYSIGHT
ECHMN 3 TECHM:

1001 1001
1.00:1

|
|
I
|
I
|
I
|
| 1.00:1
|
|
|
|
|
|
|
|
|
|
|
|
I

void Emvco_Polling(void * pHalParams)
Board_LED_Set(LED_NUM, 1);

for(i=0;1<10;i++)
L

[* Load Emvco Default setting */
status = LoadEmvcoSettings();

Measured time for 10 CHECK_STATUS (status); Veasured fime for 10
f?ﬂﬁcfggol”;? . s seatus - EmvcoRtheset (); EMVCo polling inits.

CHECK_STATUS(status); 1 Inlt ~8 07 ms

status = phhalHw_SetConfig(pHal, PHHAL_HW_CONFIG_SET_EMD, PH_OFF};
CHECK_STATUS (status);

1
¥

Board_LED Set(LED_NUM, @);
Linux setup is ~ 4x times slower SO e .
than bare metal setup During the |n_|t|a|zat|on, seve_ra registers are written.
The process is repeated 10 times to get an average

h
>N

Measured time for EMVCo PPSE

Measured time for a
EMVCo loopback
transaction takes
57/ms

* Pseudo-code extracted from the real
EMVCo polling source code example from
the NFC Reader Library

10.0:1

*phStatus EMVCoDatalLoopBack (..) {
1. Set GPIO(High):;

2. EMVCoDataExchange (...) ;

3. Set GPIO(Low);

Linux setup is ~ 2x times slower
than bare metal setup

10.0:1
1.00:1

Measured time for a
EMVCo loopback
transaction takes
32ms

h
>N

Overcoming Linux higher latency for
time-sensitive applications

Recommendations to reduce Linux latency

Linux-based NFC reader architecture

Host controller o
O ()]
3 S =2
Linux OS stack E = =
3 2 - 2] 8
. = <
8 LL =
HW platform T -
* Increase CPU/SPI clock as much as the MCU can
* High latency: Access the SPI driver in process.
Kernel Space IS slow. * Reduce SPI / host interface interactions as much as
« High CPU load: There is a lot of code m possible: Linux driver is optimized for few long
involved just to write one register. transactions rather than lots of short ones
Y.
_ . | Move NFC Reader Library BAL module to
L]
The most effective solution!! I Kernel space

|- N
LT
30 Knowledge

NFC Reader Library support of BAL module in Kernel space

: : ™ . : ™
. Linux architecture | . Linux architecture
1
Ty | Ty
App 1 App 2 App 3 I App 1 App 2 App 3
3 : 3
®© System Libraries : @© System Libraries
& . &
= GNU C DRM NFC Reader I = GNU C DRM NFC Reader
8 Library Library library I S Library Library library
I
I
I
Syscall Dispatcher | ' Syscall Dispatcher
|
Generic Kernel I Generic Kernel
3 | 8
S Process Memory Virtual File ! ® Process Memory Virtual File
(% scheduler manager System : c% scheduler manager System
9] : 2
s I =
Q I Q
N2 : x NFC Reader
. Display . : | USB Display 12C SPI Library BAL
USEClEs Driver 12C driver SELdrver I driver Driver driver driver layer
|
v 1 v
|
A\ I - J
1

Option 1: Default NFC Reader Library _Op_tion 2:_ NFC Reader Liprary integration
integration in Linux with all lib in user space in Linux with BAL module in kernel space

SO oo (R

NFC Reader Library BAL module: User Space vs Kernel space

(Linux architecture h BAL layer in User Space
1. Read GPIO to wait for BUSY line from

t App 1 App 2 App 3 previous command going low.
Q . 2. Setup and start first SPI transfer. Plenty of system
(‘,3), System Libraries 3. Read GPIO to wait for BUSY going calls and context
i Library Il IoIFE157 4. Setup and start second SPI transfer.
5 .
Syscall Dispatcher

§ Process Memory Virtual File .
(?)' scheduler manager System i BAL layer in Kernel Space
g 1. System call read() leading to a context
§ NFC Reader switch

USB Display 12C Sp| Library BAL 2. Access BAL kernel module with direct

driver Driver driver driver layer access to the SPI and GPIO

frameworks.

oo (R

NFC Reader Library BAL module: User Space vs Kernel space

BAL layer in User Space: Measured time between two SPI transfers (Raspberry Pi 2 running Linux OS*)

W Annotations

Until we start
writing into the
SPI interface, it
takes 86us

W Annotations
I

38 ps —+H—l

Until we start
writing into the
SPI interface, it

takes 2us
*This setup was conducted with Raspberry Pi 2, 1GHz Quad core Cortex-A7 at full power. Measurements are not comparable with the above sections. ‘ '
33 Knowiedge BAL in Kernel space is ~ 40x times faster 4\

NFC Reader Library BAL module in Kernel space: Resources

(" Linux architecture h
78
App 1 App 2 App 3
@ [1] GitHub repo with:
g System Libraries ;) di .) |) n
@ S o e e « Information about building, configuring and loading the
g Library Library library module
« An example of the integration on Raspberry Pi.
Syscall Dispatcher [2] App note with:
» Explanation of how the NFC Reader Library needs to be
3 o — Vsl Eile . N changed in order to call the k_ern_el module instead of using
& scheduler manager System Sti < the default BAL module running in user-space.
2
ﬁ NFC Reader
UsB Display 12C SPI Library BAL
driver | Driver } driver] driver e [1] https://github.com/NXPNFCLinux/nxprdlib-kernel-bal
_ [2] http://www.nxp.com/documents/application_note/AN11802.pdf

.ot..
e Mobile .
TR s m

http://www.nxp.com/documents/application_note/AN11802.pdf
https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

Wrap up & Q&A

Reference links & Info

- NFC Reader Library

- CLRC663 plus

- PN5180

- Github Repo:

- NFC Reader Library for Linux installation guidelines

h
>N

http://www.nxp.com/pages/:NFC-READER-LIBRARY
http://www.nxp.com/products/:CLRC66303HN
http://www.nxp.com/products/:PN5180
https://github.com/NXPNFCLinux/nxprdlib-kernel-bal
http://www.nxp.com/documents/application_note/AN11802.pdf

MobileKnowledge

Software development in Android and iOS MIFARE® product-based applications

Embedded software for MCUs End-to-end systems, readers and card-related designs
JCOP, Java Card operating Systems EMVco applications

Hardware design and development Readers, cards, design for test compliancy (including PCI)
Digital, analog, sensor acquisition, power management Secure Element management

Wireless communications WiFi, ZigBee, Bluetooth, BLE GlobalPlatform compliant backend solutions

Contactless antenna RF design, evaluation and testing Secure services provisioning OTA, TSM services

MobileKnowledge

Roc Boronat 117, P3M3
08018 Barcelona
(Spain)

contactless revolution N T,

Get in touch with us

MOBILE
'WORLD CAPITAL.
BARCELONA

37 I\Knr?cta)\:&?edg‘e

https://www.google.es/maps/place/MobileKnowledge/@41.402408,2.1926513,17z/data=!3m1!4b1!4m2!3m1!1s0x12a4a33d3b71de05:0xcb1b84b268066826
http://www.themobileknowledge.com/
mailto:mk@themobileknowledge.com

How to integrate NFC frontends
In LinuX

Jordi Jofre (Speaker)
Angela Gemio (Host)

Please remember to fill out our (pop-up)
Check your email for and on-demand
addresses

Please check NXP and MobileKnowledge websites for
and

h

>N

http://www.nxp.com/support/classroom-training-events:CLASSROOM-TRAINING-EVENTS
http://www.themobileknowledge.com/content/knowledge-catalog-0

