
PUBLIC

JORDI JOFRE
NFC READERS
NFC EVERYWHERE
27/07/2017

IoT solution made easy with NFC
Session 2: Bluetooth pairing with the NTAG I2C plus kit for Arduino pinout

1

NFC for easy one-tap pairing

2

Simple secure pairing with a single tap

Pair your phone faster with

Bluetooth devices, without

conflicts

Tap your Wi-Fi router to

get an instant Wi-Fi

connection

Pair wireless accessories

to your main unit

NFC Benefits

• Pair devices 20x faster than with BLE or

Wi-Fi

• Identify a device instantly (no device

conflicts or codes)

• Make devices easier to use

• Reduce tech-support costs

• Ensure that accessories are paired to the

correct device

3

How does Bluetooth secure pairing with NFC work?

Easy Bluetooth pairing process

▪Tap the NFC tag

▪Exchange Pairing Credentials

▪Handover to BT / BLE

4

Two solutions to implement secure simple pairing

With NTAG I2C plus

BT/

MCU

I²C

Field detect

NTAG I²C plus

• Pairing target information (BT MAC

address) needs to be programmed only

once, as MCU and NTAG I²C plus

exchange this information.

• Phone can wake up the device through

the field detect interrupt.

Today’s described

solution

With NTAG213 label

BT/

MCU

NTAG213 based

inlay/label

• Label comes with integrated antenna

• Label can be based anywhere in the

product.

• BT MAC address needs to be

programmed to both the label and the

MCU.

5

I2C

Any NDEF

How to initialize Bluetooth pairing with NTAG I2C plus

MCU

New

announcement

iOS 11

NEW

FRDM-KW41Z OM23221ARDApp logic

6

Hardware setup

7

Kinetis KW41Z/31Z/21Z key differentiators

Multi-Protocol Radio – High performance radio supporting Bluetooth Smart/Bluetooth

Low Energy (BLE) v4.2, Generic FSK and IEEE 802.15.4 (Thread) based standards

Large Memory – Enough memory to adequately contain desired networking stack(s)

with ample room remaining for custom applications

Low Power – Low transmit, receive and standby currents that maximize battery life,

including standard coin-cells

Complete Enablement – Fully compliant, qualified Bluetooth Low Energy, Thread and

802.15.4 MAC/PHY. Support for Generic FSK, IPv6 over BLE, SMAC, multiple RTOSes,

KSDK 2.0, MCUXPresso IDE and IAR IDEs.

8

Get to know the FRDM-KW41Z

USB OpenSDA

Reset button

Arduino pinout header

Arduino pinout header

KW41Z

32MHz crystal

SMA

connector

32KHz crystal

Crystal out

SW buttons

External flash

memory

OpenSDA MCU

PSWITCH

RGB LED

COM LED

OpenSDA SWD

KW41Z SWD

FXOS8700CQ

9

New NTAG I2C plus kit for Arduino pinout

NTAG I2C plus

antenna board

OM29110ARD Adaptor board with

an Arduino-compatible header

NEW !

▪ NTAG I²C plus PCB antenna board

▪ Adapter board for Arduino pinout

OM23221ARD contents

OM23221ARD features

▪ Connectivity to any device with Arduino pinout, such as

NXP Freedom board family (Kinetis) and UDOO Neo

(i.MX).

▪ Software support for Bluetooth pairing example

based on NXP KW41Z, projects available on Explorer

Kit moved to Kinetis platform (e.g. pass-through

mechanism) and all examples available through the Kinetis

Expert Tool

For additional information please visit:

http://www.nxp.com/demoboard/OM23221ARD

http://www.nxp.com/demoboard/OM23221ARD

10

Get to know OM23221ARD board

Pin No. Pin Name Purpose

1 3.3V 3.3V supply to the NFC board from host.

2 5V 5V supply to the NFC board from host.

3 Vout Supply from the NFC board (RF harvesting case)

4 GND Ground

5 GPIO0 General purpose I/O

6 GPIO1 General purpose I/O

7 GPIO2 General purpose I/O

8 GPIO3 General purpose I/O

Pin No. Pin Name Purpose

1 I2C_SDA I2C data line

2 I2C_SCL I2C clock line

3 SPI_MOSI SPI master output, slave input

4 SPI_MISO SPI master input, slave output

5 SPI_NSS SPI slave select

6 SPI_SCKI SPI serial clock

7 UART_TX Host General purpose I/O pin

8 UART_RX Host General purpose I/O pin

Arduino interface board

It exposes physical interfaces

required by the NFC boards. These

are:

▪ Usual power supplies (3.3V-5V)

▪ Usual IC interfaces (I2C,

SPI,UART)

▪ Generic GPIOs to be used for

different purposes (e.g. field

detection, interrupt, reset, etc)

11

NTAG I2C plus wiring with FRDM-KW41Z board

Pin No. NTAG I2C plus pin HDR Pin Connector

1 LA (Antenna connection LA) -

2 VSS (GND) 7 J3-GND

3 SCL (Serial Clock I2C) 10 J2-PTC2

4 FD (Field detection) 3 J1-PTC17

5 SDA (Serial data I2C) 9 J2-PTC3

6 VCC ((External power supply) 4 J3-3V3

7 VOUT (Energy Harvesting) 8 J3-P5-9V IN

8 LB (Antenna connection LB) -

OM29110ARD adaptor board FRDM-KW41Z

SDA

FD

SCL

VSS

VCC

VOUT

J1 headers

SDA

SCL

FD

J3 headers

VSS

VCC

VOUT

J4 headers

J2 headers

12

BLE pairing with NFC on

KW41Z and NTAG I2C plus

13

BLE pairing with NFC on KW41 and NTAG I2C plus
Demo application behavior: (1) Application goes from idle to searching mode

BLE antenna

NFC

NTAG I2C plus

NFC antenna

SW3

SW4

LED3 LED4

MCU

KW41Z512VHT4

I2C

*Simplified block diagram displaying the components

to explain the demo application behavior

After button SW4 is pressed:

• Application goes from idle to

searching mode (BLE active).

• LED 3 blinks.

14

BLE pairing with NFC on KW41 and NTAG I2C plus
Demo application behavior: (2) Application writes BLE pairing NDEF message

BLE antenna

NFC

NTAG I2C plus

NFC antenna

SW3

SW4

LED3 LED4

MCU

KW41Z512VHT4

I2C

*Simplified block diagram displaying the components

to explain the demo application behavior

Writes BLE pairing

NDEF message

via I2C interface

BLE

pairing

NDEF

After button SW3 is pressed:

• The BLE pairing NDEF is

written to the NTAG I2C plus

chip.

• LED 4 is set to green.

15

BLE pairing with NFC on KW41 and NTAG I2C plus
Demo application behavior: (3) NFC device reads pairing information and connects

BLE antenna

NFC

NTAG I2C plus

NFC antenna

NFC

device

SW3

SW4

LED3 LED4

MCU

KW41Z512VHT4

I2C

*Simplified block diagram displaying the components

to explain the demo application behavior

BLE

pairing

NDEF

BLE link

With a tap:

• The NFC device reads the

BLE pairing NDEF message.

• Automatically established a

BLE connection.

16

BLE pairing with NFC on KW41 and NTAG I2C plus
Demo application behavior: (4) Application turns back into normal operation mode

BLE antenna

NFC

NTAG I2C plus

NFC antenna

NFC

device

SW3

SW4

LED3 LED4

MCU

KW41Z512VHT4

I2C

*Simplified block diagram displaying the components

to explain the demo application behavior

Overwrite to

default Android

demo app NDEF

BLE link

After 10 seconds or after the

NFC device has read the BLE

pairing NDEF message:

• MCU removes the BLE

pairing NDEF

• MCU writes the default

NDEF about the NTAG I2C

plus Android demo app

• LED 4 switches off.

BLE

pairing

NDEF

Android

demo app

NDEF

18

NTAG I2C plus integration into

FRDM-KW41Z

19

FRDM-KW41Z startup

All documentation and tutorials: www.nxp.com/demoboard/FRDM-KW41Z

Test your FRDM-KW41Z
Download & install MCUXpresso

Download & install MCUXpresso SDK for the

FRDM-KW41Z

Check & import demo applications included in

the MCUXpresso SDK for FRDM-KW41Z in

\boards\frdmkw41z\wireless_examples\

http://www.nxp.com/demoboard/FRDM-KW41Z

20

Importing FRDM-KW41Z SDK example in MCUXpresso toolchain

FRDM-KW41Z video tutorials: www.nxp.com/demoboard/FRDM-KW41Z

Import SDK Import SDK examples Import /wireless/bluetooth/hid_device example

Sample project used as a basis for adding NTAG I2C is hid_device

located at: boards\frdmkw41z\wireless_examples\bluetooth\hid_device

http://www.nxp.com/demoboard/FRDM-KW41Z

21

Adding NTAG I2C plus middleware to the BLE project

Import NTAG_I2C_plus middleware into the project

Add GPIO settings for I2C interface & field detection
pin

Add NTAG hardware and software initialization

Extend BLE demo application for writing NDEF message
to the NTAG I2C plus chip when button SW3 is pressed

Build NDEF message for BLE pairing and implement NDEF
writing function.

Default imported
hid_device demo app
for KW41Z

Without NFC support

With NFC support

22

Importing NTAG I2C plus middleware

Implements the NTAG I2C plus command set and offers an API to developers to communicate with

NTAG I2C plus from the I2C interface.

E.g. HAL_NTAG: Memory operations (I2C side)

NTAG_ReadBytes (NTAG_HANDLE_T ntag, uint16_t address,uint8_t *bytes, uint16_t len);
NTAG_WriteBytes(NTAG_HANDLE_T ntag, uint16_t address, const uint8_t *bytes,
uint16_t len);

E.g. HAL_NTAG Register operations

NTAG_ReadRegister (NTAG_HANDLE_T ntag, uint8_t reg, uint8_t *val);
NTAG_WriteRegister(NTAG_HANDLE_T ntag, uint8_t reg, uint8_t mask, uint8_t val);

E.g. HAL_NTAG Setting SRAM for pass-throug mode operation

NTAG_SetPthruOnOff(NTAG_HANDLE_T ntag, BOOL on)
NTAG_SetTransferDir(NTAG_HANDLE_T ntag, NTAG_TRANSFER_DIR_T dir)

Interface to access the I2C hardware of the KW41Z.

Interface for registering callbacks and waiting for interrupts of the KW41Z.

Interface to access the timing hardware of the KW41Z.

23

GPIO pins settings

I2C pins

FD pin

void BOARD_InitI2C(void) {
/* PORTB0 (pin 16) is configured as I2C0_SCL */
PORT_SetPinMux(PORTB, PIN0_IDX, kPORT_MuxAlt3);
PORTB->PCR[0] = ((PORTB->PCR[0] & (~(PORT_PCR_PS_MASK | PORT_PCR_PE_MASK |

PORT_PCR_ISF_MASK)))| PORT_PCR_PS(PCR_PS_UP)| PORT_PCR_PE(PCR_PE_ENABLED));

/* PORTB1 (pin 17) is configured as I2C0_SDA */
PORT_SetPinMux(PORTB, PIN1_IDX, kPORT_MuxAlt3);
PORTB->PCR[1] = ((PORTB->PCR[1] & (~(PORT_PCR_PS_MASK | PORT_PCR_PE_MASK |

PORT_PCR_ISF_MASK))) | PORT_PCR_PS(PCR_PS_UP)|
PORT_PCR_PE(PCR_PE_ENABLED));

#ifdef NTAG_I2C
// initialization FD pin
#define PIN17_IDX17u /*!< Pin number for pin 17 in a port */

#endif // NTAG_I2C

24

NTAG I2C plus SW and HW initialization

#ifdef NTAG_I2C
/* NTAG middleware module */
#include "HAL_I2C_driver.h“
#include "HAL_I2C_kinetis_fsl.h“
#include "app_ntag.h"

#endif //NTAG_I2C

#ifdef NTAG_I2C
NFC_HANDLE_T ntag_handle; // NTAG handle

#endif // NTAG_I2C

#ifdef NTAG_I2C
/* Initialize I2C for NTAG communication */
HAL_I2C_InitDevice(HAL_I2C_INIT_DEFAULT, I2C_MASTER_CLK_SRC,
NTAG_I2C_MASTER_BASEADDR);
SystemCoreClockUpdate();

/* Initialize the NTAG I2C components */
ntag_handle = NFC_InitDevice((NTAG_ID_T)0, NTAG_I2C_MASTER_BASEADDR);

#endif // NTAG_I2C

25

HID_device demo extensions
void BleApp_HandleKeys(key_event_t events){
#ifdef NTAG_I2C

switch (events){
case gKBD_EventPressPB1_c: { // short press of SW4

BleApp_Start();
boNDEFState = TRUE; // pairing via NDEF is allowed
break;}

case gKBD_EventPressPB2_c: { // short press of SW3
if (boNDEFState) {
/* added to copy the pairing NDEF message to NTAG_I2C chip */
NDEF_pairing_write(); // NTAG
Led3On(); // green LED is lighting
/* Start advertising timer */
TMR_StartLowPowerTimer(mNDEFTimerId,

gTmrLowPowerSecondTimer_c,TmrSeconds(timeout),
NDEFTimerCallback,NULL);}

case gKBD_EventLongPB1_c: { // long press of SW4
if (mPeerDeviceId != gInvalidDeviceId_c){

Gap_Disconnect(mPeerDeviceId);
boNDEFState = FALSE;}

void NDEFTimerCallback(void * pParam){
TMR_StopTimer(mNDEFTimerId); /* Stop Advertising Timer*/
Led3Off(); // green LED off
NDEF_Defaul_write(); } // NTAG

26

NTAG I2C plus integration into FRDM-KW41Z

NDEF details

27

• Specifies a common data format for NFC

Forum-compliant devices and NFC Forum-

compliant tags.

• It is used to describe how a set of actions are

to be encoded onto an NFC tag (e.g. open a

URL, create an SMS, create an email, etc.).

• The benefit of using NDEF is that you do not

need to have custom software running on the

touching device.

Formats for data exchange
NFC data exchange format (NDEF)

28

• Common NFC record types:

− vCard: Stores contact information (e.g. electronic business cards)

− URI: Stores Universal Resource Identifiers (URIs), which include web

addresses and other network resources and files

− Text: Stores text strings in multiple languages.

− Smart poster: Stores text strings, URLs, SMS or phone numbers.

− Connection handover: Stores pairing with Bluetooth, Wi-Fi or other protocols

− Device information: Stores basic details about the device mode and its

identity.

− Signature: Provides an algorithm or certificate type for use as a digital

signature

Formats for data exchange
Common NFC record types

* For more on these formats, check the NFC Forum website (nfc-forum.org)

Default NDEF

used in the app

Pairing NDEF

used in the app

29

static const uint8_t BLE_pairing_NDEF_msg[] = {
0xAA, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xE1, 0x10, 0x6D, 0x00,
0x03, 0x36, 0xDA, 0x20,
0x11, 0x01, 0x61, 0x70,
0x70, 0x6C, 0x69, 0x63,
0x61, 0x74, 0x69, 0x6F,
0x6E, 0x2F, 0x76, 0x6E,
0x64, 0x2E, 0x62, 0x6C,
0x75, 0x65, 0x74, 0x6F,
0x6F, 0x74, 0x68, 0x2E,
0x65, 0x70, 0x2E, 0x6F,
0x6F, 0x62, 0x30, 0x11,
0x00, 0x04, 0x00, 0x00,
0x9F, 0x04, 0x00, 0x08,
0x09, 0x46, 0x53, 0x4C,
0x5F, 0x48, 0x49, 0x44,
0xFE, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

Capability Container (Magic Number =0xE1, Version=1.0,

Memory size=872bytes, Read/Write access)

TLV (Type=NDEF, Length=54 octets)

NDEF message for BLE pairing details

Record Type Name: application/vnd.bluetooth.ep.oob (ASCII)

* Data is written in blocks of 16 bytes from the I2C interface but is shown in lines of 4 bytes for

reading convenience)

MAC address = 00:04:9F:00:00:04 (LSB- 6 bytes)

Complete local name = “FSL_HID” (ASCII)

Terminator TLV (0xFE) + Padding ‘00’ to get a multiple of 16

octets

Doc 1: NFC Forum Type 2 Tag Operation Specification
Doc 2: NFC Data Exchange Format (NDEF) Technical Specification
Doc 3: Connection Handover Technical Specification
Doc 4: Bluetooth® Secure Simple Pairing Using NFC

30

static const uint8_t BLE_pairing_NDEF_msg[] = {
0xAA, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xE1, 0x10, 0x6D, 0x00,
0x03, 0x36, 0xDA, 0x20,
0x11, 0x01, 0x61, 0x70,
0x70, 0x6C, 0x69, 0x63,
0x61, 0x74, 0x69, 0x6F,
0x6E, 0x2F, 0x76, 0x6E,
0x64, 0x2E, 0x62, 0x6C,
0x75, 0x65, 0x74, 0x6F,
0x6F, 0x74, 0x68, 0x2E,
0x65, 0x70, 0x2E, 0x6F,
0x6F, 0x62, 0x30, 0x11,
0x00, 0x04, 0x00, 0x00,
0x9F, 0x04, 0x00, 0x08,
0x09, 0x46, 0x53, 0x4C,
0x5F, 0x48, 0x49, 0x44,
0xFE, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

NDEF message for BLE pairing details

* Data is written in blocks of 16 bytes from the I2C interface but is shown in lines of 4 bytes for

reading convenience)

Doc 1: NFC Forum Type 2 Tag Operation Specification
Doc 2: NFC Data Exchange Format (NDEF) Technical Specification
Doc 3: Connection Handover Technical Specification
Doc 4: Bluetooth® Secure Simple Pairing Using NFC

31

Default NDEF message details

static const uint8_t Default_BeginingOfMemory[] = {
0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xE1, 0x10, 0x6D, 0x00,
0x03, 0x5F, 0x91, 0x02, 0x35, 0x53, 0x70, 0x91,
0x01, 0x14, 0x54, 0x02, 0x65, 0x6E, 0x4E, 0x54,
0x41, 0x47, 0x20, 0x49, 0x32, 0x43, 0x20, 0x45,
0x58, 0x50, 0x4C, 0x4F, 0x52, 0x45, 0x52, 0x51,
0x01, 0x19, 0x55, 0x01, 0x6E, 0x78, 0x70, 0x2E,
0x63, 0x6F, 0x6D, 0x2F, 0x64, 0x65, 0x6D, 0x6F,
0x62, 0x6F, 0x61, 0x72, 0x64, 0x2F, 0x4F, 0x4D,
0x35, 0x35, 0x36, 0x39, 0x54, 0x0F, 0x13, 0x61,
0x6E, 0x64, 0x72, 0x6F, 0x69, 0x64, 0x2E, 0x63,
0x6F, 0x6D, 0x3A, 0x70, 0x6B, 0x67, 0x63, 0x6F,
0x6D, 0x2E, 0x6E, 0x78, 0x70, 0x2E, 0x6E, 0x74,
0x61, 0x67, 0x69, 0x32, 0x63, 0x64, 0x65, 0x6D,
0x6F, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

Doc 1: NFC Forum Type 2 Tag Operation Specification
Doc 2: NFC Data Exchange Format (NDEF) Technical Specification
Doc 3: NFC Smart Poster Record Type Definition (RTD)

Capability Container (Magic Number

=0xE1, Version=1.0, Memory

size=872bytes, Read/Write access)

TLV (Type=NDEF, Length=95 octets)

Text record = “NTAG I2C EXPLORER”

URI record =

http://www.nxp.com/demoboard/OM5569

Android application record=

android.com.pkg com.nxp,ntagi2cdemo

Terminator TLV (0xFE) + Padding ‘00’ to get

a multiple of 16 octets

* Data is written in blocks of 16 bytes from the I2C interface but is shown in lines of 8 bytes for

reading convenience)

32

Default NDEF message details

static const uint8_t Default_BeginingOfMemory[] = {
0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xE1, 0x10, 0x6D, 0x00,
0x03, 0x5F, 0x91, 0x02, 0x35, 0x53, 0x70, 0x91,
0x01, 0x14, 0x54, 0x02, 0x65, 0x6E, 0x4E, 0x54,
0x41, 0x47, 0x20, 0x49, 0x32, 0x43, 0x20, 0x45,
0x58, 0x50, 0x4C, 0x4F, 0x52, 0x45, 0x52, 0x51,
0x01, 0x19, 0x55, 0x01, 0x6E, 0x78, 0x70, 0x2E,
0x63, 0x6F, 0x6D, 0x2F, 0x64, 0x65, 0x6D, 0x6F,
0x62, 0x6F, 0x61, 0x72, 0x64, 0x2F, 0x4F, 0x4D,
0x35, 0x35, 0x36, 0x39, 0x54, 0x0F, 0x13, 0x61,
0x6E, 0x64, 0x72, 0x6F, 0x69, 0x64, 0x2E, 0x63,
0x6F, 0x6D, 0x3A, 0x70, 0x6B, 0x67, 0x63, 0x6F,
0x6D, 0x2E, 0x6E, 0x78, 0x70, 0x2E, 0x6E, 0x74,
0x61, 0x67, 0x69, 0x32, 0x63, 0x64, 0x65, 0x6D,
0x6F, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

Doc 1: NFC Forum Type 2 Tag Operation Specification
Doc 2: NFC Data Exchange Format (NDEF) Technical Specification
Doc 3: NFC Smart Poster Record Type Definition (RTD)

* Data is written in blocks of 16 bytes from the I2C interface but is shown in lines of 8 bytes for

reading convenience)

33

How to alternatively configure

NTAG21x / NTAG I2C plus for

Bluetooth pairing

34

NFC TagWriter by NXP

Download NXP TagWriter

application from Play Store

Go to the “Write tags ->

New Dataset ->
Go to -> Bluetooth

Fill the Device name with:

• “FSL_HID”

• MAC is “00:04:9F:00:00:04”

And tap the NTAG board

https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter&hl=en

35

Wrap up and Q&A

36

Summary of available resources

• BLE pairing with NFC on KW41 and
NTAG I2C plus source code
www.nxp.com/downloads/en/snippets-boot-
code-headers-monitors/SW4223.zip

• NTAG I2C plus kit for Arduino pinout
www.nxp.com/demoboard/OM23221ARD

• FRDM-KW41Z board
www.nxp.com/demoboard/FRDM-KW41Z

• NXP NFC community
https://community.nxp.com/community/nfc

http://www.nxp.com/downloads/en/snippets-boot-code-headers-monitors/SW4223.zip
http://www.nxp.com/demoboard/OM23221ARD
http://www.nxp.com/demoboard/FRDM-KW41Z
https://community.nxp.com/community/nfc

37

MIFARE applications

End-to-end systems, readers and card-related designs

EMVco applications

Readers, cards, design for test compliancy (including PCI)

Secure Element management

GlobalPlatform compliant backend solutions

Secure services provisioning OTA, TSM services

Software development in Android and iOS

Embedded software for MCUs

JCOP, Java Card operating Systems

Hardware design and development

Digital, analog, sensor acquisition, power management

Wireless communications WiFi, ZigBee, Bluetooth, BLE

Contactless antenna RF design, evaluation and testing

We help companies leverage the mobile

and contactless revolution

MobileKnowledge

Roc Boronat 117, P3M3

08018 Barcelona

(Spain)

Get in touch with us

www.themobileknowledge.com

mk@themobileknowledge.com

https://www.google.es/maps/place/MobileKnowledge/@41.402408,2.1926513,17z/data=!3m1!4b1!4m2!3m1!1s0x12a4a33d3b71de05:0xcb1b84b268066826
http://www.themobileknowledge.com/
mailto:mk@themobileknowledge.com

