DEVICE-TO-DEVICE COMMUNICATION VIA NFC

WEBINAR SERIES: HOW TO BUILD NFC APPLICATIONS

JORDI JOFRE NFC READERS NFC EVERYWHERE 07/03/2017

SECURE CONNECTIONS FOR A SMARTER WORLD

Agenda

- Device-to-device communication demo
 - Demo functionality
 - Hardware details
 - Application logic (How the CLRC663 *plus* and NTAG I²C *plus* are used)
 - MCU code details (for CLRC663 *plus* and NTAG I²C *plus*)
 - Available resources
- Wrap up and Q&A

DEMO FUNCTIONALITY

Device-to-device communication via NFC demo Elements

Optional tablet display (BLE connection)

Reader module & rotating sensor communicate via NFC

Device-to-device communication via NFC demo

Use cases

- -- NFC application -
 - NFC for communication with a batteryless unit. The reader's NFC field can supply and operate low-power electronics.

Batteryless rotating disk

Demo use case:

 Once the reader module is supplied, all the electronics on the rotating disk are powered by harvesting energy from the reader module's RF field (Green LED on)

Device-to-device communication via NFC demo

Use cases (II)

- ___ NFC application
 - NFC for communication between 2 devices mounted in close vicinity that need to be completely isolated (e.g. dust proof)

Demo use case 1: <u>Bidirectional exchange of static information</u> **Reader module → rotating disk communication**:

- Action Button 1 is pressed → RGB LED on rotating disk turns blue.
- Action Button 2 is pressed →RGB LED on rotating disk turns red.
- Action Button 1 & 2 are pressed → RGB LED on rotating disk turns white.

Demo use case 2: <u>Bidirectional exchange of static information</u> **Rotating disk → Reader module communication:**

Action Button 3 is pressed → LED pattern on LED circle will appear.

Device-to-device communication via NFC demo

Use cases (III)

C-- NFC application

• NFC for communication with a rotating part as a cable replacement solution

Demo use case 3: <u>Bidirectional exchange of dynamic</u> <u>information</u>

- The rotating disk is able to harvest energy from the RF's field of the reader module even if the disk is moving.
- The acceleration sensor measures x,y,z coordinates of the disk, the angle is calculated and the sensor position is displayed on the LED circle on the reader board.
- Android App:

Action button data, rotation angle and temperature information is additionally sent via BLE to connected App.

Device-to-device communication via NFC demo Energy harvesting

Rotating disk does not include any battery Energy is harvested as soon as the disk is close to the base board

Rotating disk electronics are supplied by the base board RF field

Device-to-device communication via NFC demo Rotating disk → reader module communication

While button 3 is pressed, a pattern appears on the LED circle

The LED circle lights up one LED accordingly to the coordinates sent by the accelerometer on the rotating part

68.6

HARDWARE DETAILS

Reader module architecture

Board based on CLRC663 plus

* HW schematics are available

CLRC663 *plus* product highlights

14

Best performance at lowest power consumption Extended LPCD (Low Power Card Detection) range with new configuration options. Low supply voltage for battery support down to 2.5V

Design flexibility

Max. operating Tx current of 350mA with limiting value of 500mA. Chip temperature range from -40 °C to 105°C

Backward compatibility Pin-to-pin compatible to CLRC663

Faster time-to-market

Complete support package including EMVCo compliant NFC SW Library and NFC Cockpit for easy antenna configuration

* More CLRC663 plus info on product launch

Rotating disk architecture

Passive board based on NTAG I²C *plus*

* HW schematics are available

NTAG I²C *plus* product highlights

The NTAG I²C *plus* connects to the microcontroller via the I²C serial bus interface

NFC-enabled mobile device connects to the MCU via the NFC interface, using the I²C as the communication conduit

Memory access management

How to use NTAG I²C plus SRAM for bidirectional data exchange

- The pass-through mode provides:
 - The SRAM for bidirectional data transfer from an NFC device to an I²C bus master
 - Triggering mechanisms for the synchronization of the data transfer.
- The data transfer signaling can be done though:
 - The Field Detection pin
 - Polling / reading specific NTAG I²C plus registers.

- NFC to I²C data transfer signaling:
 - The host polls **SRAM_I2C_READY** to learn if new data has been written by the RF interface in the SRAM.
 - A trigger on the FD pin (FD voltage goes from **HIGH** to **LOW**) indicates to the host that data is ready to be read from SRAM.
- I²C to NFC data transfer signaling:
 - The NFC interface polls **SRAM_RF_READY** to learn if new data has been written by the I²C interface in the SRAM.
 - A trigger on the FD pin (FD voltage goes from **LOW** to **HIGH**) indicates to the host that data has been read from SRAM by the NFC interface.

Register bit	Use
PTHRU_ON_OFF	Detect if the pass-through mode is still enabled (gets reset in case of RF or I2C power down)
TRANSFER_DIR	Defines the data flow direction for the data transfer
I2C_LOCKED	Detect if memory access is currently locked to I2C
RF_LOCKED	Detect if Memory access is currently locked to RF
SRAM_I2C_READY	Detect if there is data available in the SRAM buffer to be fetched by I ² C
SRAM_RF_READY	Detect if there is data available in the SRAM buffer to be fetched by RF
RF_FIELD_PRESENT	Shows if a RF field strong enough to read the tag is there

Table. Register bits which can be used for communication synchronization

17

Important:

Read / write operations to the termination page of the SRAM is what trigger register flags.

<u>AN11579</u> - How to use the NTAG® I²C and NTAG I²C plus for bidirectional communication

APPLICATION LOGIC READER MODULE → ROTATING DISK COMMUNICATION

Energy harvesting

EEPROM memory area (non-volatile memory)

*Rotating disk electronics are supplied by the base board RF field

19 Training Mobile

Action button 1

Action button 2

Action button 1&2

exchange between the two embedded systems.

APPLICATION LOGIC ROTATING DISK→ BASE BOARD COMMUNICATION

Rotating disk → Reader module communication Accelerometer (I)

4. MCU calculates angle and sets to HIGH level the appropriate GPIO (steps of 30 degrees)

> SRAM mirror memory area (volatile memory) EEPROM memory area (non-volatile memory)

(NFC interface perspective)

Data flow direction (SRAM in pass through mode)

*Rotating disk electronics are supplied by the base board RF field

Rotating disk → Reader module communication Accelerometer (II)

Page

Rotating disk

1. Disk

5. MCU calculates angle and sets to HIGH level the appropriate GPIO (steps of 30 degrees)

> SRAM mirror memory area (volatile memory) EEPROM memory area (non-volatile memory)

Byte number within a page

Fig. Simplified NTAG I²C *plus* memory map (NFC interface perspective)

Data flow direction (SRAM in pass through mode)

Important: The LED circle operation is directly controlled by the disk position coordinates sent via the SRAM!

CU writes RAM 2C CU writes CU WRITES

2. MCU reads temperature value and the **updated Cx, Cy, Cz** coordinates from accelerometer

> *Rotating disk electronics are supplied by the base board RF field

Rotating disk \rightarrow Reader module communication Action button 3

0

Cy

T1

Page

address

(HEX) 0x00

0x01

0x02

0x03

0x04

0x05

... 0xF0

0xFB

0xFC 0xFD

0xFE

0xFF

Rotating disk

4. MCU set to HIGH level the 12 GPIOs controlling the 12 LEDs.

> SRAM mirror memory area (volatile memory) EEPROM memory area (non-volatile memory)

Important: The LED circle pattern is triggered by a specific data byte sent via the SRAM!

Cy

T2

Fig. Simplified NTAG I²C plus memory map

(NFC interface perspective)

Data flow direction (SRAM in pass through mode)

1. While user presses action button 3, the LPC11U24 GPIO 12 is in HIGH level.

> *Rotating disk electronics are supplied by the base board RF field

MCU CODE DETAILS READER MODULE (CLRC663 *PLUS*)

X Develop - NTAG_Device2DeviceDemo/NTAG_Device2DeviceDemo.c - LPCXpresso

File Edit Source Refactor Navigate Search Project Run Window Help

📑 👻 🔚 🐚 📄 👻 🛸 🗈 🗈 🔊 👘 🗈 🕞 🖃 🖶 🖘 🖧 🤣 🥜 🦼 👐 🎋 🔹 🕥 🕶 🖓

	PTO	Ject explorer 23	The Peripherals+	ofor Registers	Symbol viewer		- E			
\triangleright	D	FreeRTOS_Librar	у							
\triangleright	29	Ipc_board_nxp_lpcxpresso_11u68								
\triangleright	29	lpc_chip_11u6x								
⊿	29	NTAG_Device2D	eviceDemo							
	\triangleright	🗊 Includes								
	\triangleright	🕞 FreeRTOS								
	\triangleright	🕞 intfs								
	\triangleright	🕞 NxpNfcRdLib	0							
	\triangleright	🗁 src								
	\triangleright	NTAG_Device	e2DeviceDemo.c							
		CMakeLists.t	xt							
⊿	D	NxpNfcRdLib								
	\triangleright	🗁 comps								
	\triangleright	🗁 docs								
	\triangleright	🗁 intfs								
	\triangleright	🗁 types								
		CMakeLists.t	xt							

😃 Quickstart Panel 🔀 🗵 Variables 🏾 💁 Breakpoints 📑 Outline 🚭 Expressions	
X Start here	* ^
Import project(s)	
📸 New project	
Build all projects []	
🐔 Build 'NxpNfcRdLib' []	
🖌 Clean 'NxpNfcRdLib' []	
🐲 Debug 'NxpNfcRdLib' []	
🐲 Terminate, Build and Debug 'NxpNfcRdLib' []	E
Edit 'NxpNfcRdLib' project settings	
🖄 Quick Settings 🔻	
Export projects to archive (zip)	

Reader module MCU code

FreeRTOS Library

FreeRTOS is an open source real-time operating system (RTOS) for embedded systems supporting many different architectures and compiler toolchains.

Lpc_chip_11u6x_lib & nxp_lpcxpresso_11u68b

LPCOpen software libraries (drivers and middleware) supporting development on top of LPC MCU solutions. These two libraries bring support to LPC11U68 LPCXpresso board.

NTAG_Device2DeviceDemo

Implements the logic supporting the device-to-device communication demo for the reader module. More on the next slides.

NxpNfcRdLib

The NXP's software stack for creating and developing contactless applications. It is written in C language, it is based on modular multi-layer software architecture, and can support multiple design environments and platforms.

* Source code is available

Reader module MCU code leverages on the NFC Reader Library

* More Info and source code: http://www.nxp.com/pages/:NFC-READER-LIBRARY

NFC Reader Library components are initialized following a bottom to top approach

NTAG_Device2DeviceDemo application workflow

MCU CODE DETAILS ROTATING DISK (NTAG I²C *PLUS*)

NKP

CTION 3

8

🕛 Quickstart Panel 🛛	(x)= Variables	● _● Breakpoints	📑 Outline	တို့ Expressions	
----------------------	----------------	----------------------------	-----------	------------------	--

🔀 Start here

Import project(s)

📸 New project...

Build all projects [Debug]

K Build 'NTAG_I2C_Explorer_01_LEDs_Buttons_Xample' [Debug]

Clean 'NTAG_I2C_Explorer_01_LEDs_Buttons_Xample' [Debug]

Debug 'NTAG_I2C_Explorer_01_LEDs_Buttons_Xample' [Debug]

🕸 Terminate, Build and Debug 'NTAG_I2C_Explorer_01_LEDs_Buttons_Xample' [Debug]

Edit 'NTAG_I2C_Explorer_01_LEDs_Buttons_Xample' project settings

🚳 Quick Settings 🛛 💌

Rotating disk MCU code

Lpc_chip_11uxx_lib & nxp_lpcxpresso_11u24h_board_lib

LPCOpen software libraries (drivers and middleware) supporting development on top of LPC MCU solutions. These two libraries bring support to LPC11U24 LPCXpresso board

NTAG_I2C_ API

Implements the NTAG I²C *plus* command set and offers an API to developers to communicate with NTAG I²C *plus* from the I²C interface.

Memory operations (l²C side)
NTAG_ReadBytes (NTAG_HANDLE_T ntag, uint16_t address, uint8_t *bytes,
uint16_t len);

NTAG_WriteBytes(NTAG_HANDLE_T ntag, uint16_t address, const uint8_t
*bytes, uint16_t len);

Register operations

- 8

☆.

NTAG_ReadRegister (NTAG_HANDLE_T ntag, uint8_t reg, uint8_t *val); NTAG_WriteRegister(NTAG_HANDLE_T ntag, uint8_t reg, uint8_t mask, uint8_t val);

Setting SRAM for pass-throug mode operation NTAG_SetPthruOnOff(NTAG_HANDLE_T ntag, BOOL on) NTAG_SetTransferDir(NTAG_HANDLE_T ntag, NTAG_TRANSFER_DIR_T dir)

NTAG_I2C_Explorer_01_LEDs_Button_Xample

Implements the logic supporting the device-to-device communication demo. More on the next slide

* Source code is available

NTAG_I2C_Explorer_01_LEDs_Button_Xample application workflow

EVERYTHING YOU NEED TO BUILD YOUR DEVICE-TO-DEVICE COMMUNICATION VIA NFC SOLUTION IS HERE!

Summary of available resources

- More info about our NFC products:
 - -<u>CLRC663</u>
 - -<u>NTAG I²C plus</u>
- Check our post on the DemoLab section in our NXP community for:
 - Demo description
 - Source code
 - Schematics
 - Video recording

https://community.nxp.com/docs/DOC-333917

Software development in Android and iOS Embedded software for MCUs JCOP, Java Card operating Systems Hardware design and development Digital, analog, sensor acquisition, power management Wireless communications WiFi, ZigBee, Bluetooth, BLE Contactless antenna RF design, evaluation and testing

MIFARE® product-based applications End-to-end systems, readers and card-related designs **EMVco** applications Readers, cards, design for test compliancy (including PCI) Secure Element management GlobalPlatform compliant backend solutions Secure services provisioning OTA, TSM services

We help companies leverage the mobile and contactless revolution

MobileKnowledge

Roc Boronat 117, P3M3 08018 Barcelona (Spain)

Get in touch with us

Device-to-device communication via NFC Jordi Jofre (Speaker) Angela Gemio (Host)

Thank you for your kind attention!

Please remember to fill out our evaluation survey (pop-up)

Check your email for material download and on-demand video addresses

Please check NXP and MobileKnowledge websites for upcoming webinars and training sessions

http://www.nxp.com/support/classroom-training-events:CLASSROOM-TRAINING-EVENTS www.themobileknowledge.com/content/knowledge-catalog-0

