

Security in NFC Readers Public

Content

- ▶ NFC and security
 - NFC, a different kind of wireless
 - Under the hood of NFC based systems
 - Enhancing the security of an NFC architecture
- Secure data exchange
 - Information security goals
 - Cryptographic techniques
 - Secure Access Module
- Unauthorized access protection
 - Remote access
 - NFC interface access
- Use cases
 - Access control system
 - Internet gateway
- NFC security cookbook and conclusions

NFC AND SECURITY

NFC, a different kind of wireless

NFC at a glance:

- Contactless proximity technology
- Standardized under ISO/IEC18092 and ISO/IEC 21481
- Operating range: 10 cm (4 in)
- Easy, simple and convenient data exchange between devices
- Open and interoperable data following NFC Forum specifications
- Privacy and security inherent to short range

The three modes of NFC: A tap is all it takes

Read/Write Mode

- Interacts with an NFC-enabled device
- Reads data in from device or writes data out

Get information or initiate an action

Peer-to-Peer Mode

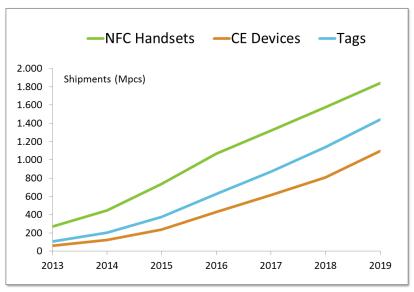
- Establishes two-way communication between NFCenabled devices
- Each device serves as an endpoint

Passive and active communication

Card Emulation Mode

- System behaves as contactless smartcard*
- Makes NFC-enabled systems compatible with contactless cards

Ticketing, payments, access control, transit...

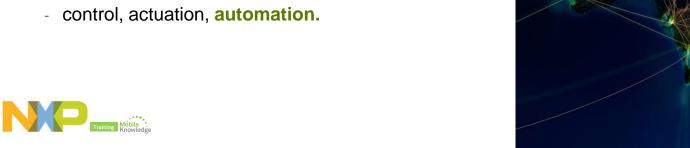

^{*} ISO/IEC 14443-compliant smartcard

NFC connected devices

Market update - some key figures

- ▶ 1.2 billion smartphones shipped in 2014
- ➤ Smartphone's share expected to continue growing from 67% in 2014 to > 80% or even higher in coming years
- ▶ 850 million NFC handsets shipped between 2012 and 2014
- ▶ 3 in 4 mobile phones to come with NFC by 2018
- > 5 billion NFC handsets will be shipped between 2013 and 2018
- NFC-enabled CE devices and tags growing exponentially, IoT wave coming.

11.0B+ NFC-enabled devices shipping 2013-2018


Sources: ABI Research, Sep'14

^{*} Updated list of NFC phones and tablets available in the market: http://www.nfcworld.com/nfc-phones-list/

The Internet of Things Revolution Ingredients for security challenges

- ► The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure (wikipedia)
- **▶** Distributed communications
- ► Large number of heterogeneous devices
- ▶ It is about
 - sensing, collecting and sharing data;

Under the hood of NFC based devices

IC

Adding an NFC reader IC:

► Full/partial NFC capabilities

uC

► Active NFC device

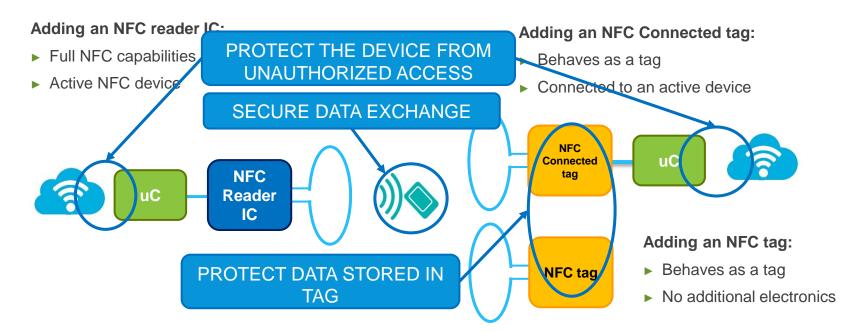
Adding an NFC Connected tag:

▶ Behaves as a tag

NFC tag

Connected to an active device

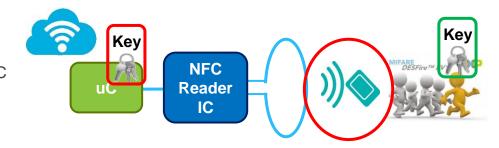
uC



- Behaves as a tag
- No additional electronics

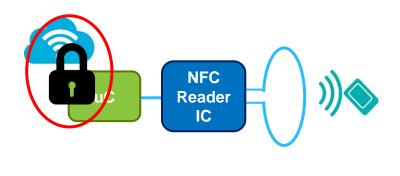
NFC INHERENTLY SECURE DUE TO ITS PROXIMITY

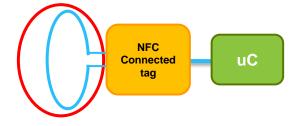
Enhancing the security of an NFC-based architecture



DATA SECURITY UNAUTHORIZED ACCESS PROTECTION

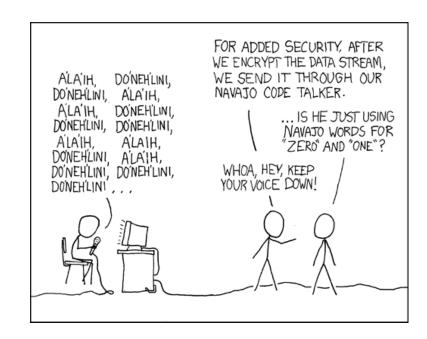
Security need: Secure data exchange


- ▶ NFC systems are interoperable and open by default.
- Securing data exchanged through RF channel through cryptographic methods.
- Using cryptography implies the usage of cryptographic keys on both sides of the communication.
- ▶ Data is now protected through cryptographic means, NFC system is not open/interoperable anymore.
- ► Cryptographic methods can be:
 - Dynamic
 - Static
- Cryptographic algorithms and keys can be:
 - Symmetric
 - Assymetric
- ► Key management and cryptographic implementation needs to be considered.



Security need: Protection from unauthorized access

- Any device connected to the "cloud" is subject to be compromised and attacked if not properly protected.
- ► This has a negative impact on consumers, infrastructure owners and equipment manufacturers alike.
- ▶ Need to implement security mechanisms to:
 - Grant access to authorized servers
 - Prevent exposure of user related data (privacy)
 - Secure communications between device and backend
 - Ensure system integrity
 - Protection of credentials
- Above objectives can be ensured through:
 - Cryptographic methods
 - Hardware based security
- ► EEPROM of NFC tag can be modified through NFC interface.



Security... a big word!

- Security is a state of mind
 - Lack of objective approach towards security
- Securing the information and process on NFC based devices requires the combination of techniques and protocols
- Cryptography as inter-disciplinary science to achieve information security goals
- Compromise between security and risk
 - What do I need to protect?
 - Trade-off between benefit vs cost for an attacker
- Your system is as secure as your weakest link
- Perfect security does not exist!

SECURE DATA EXCHANGE

What do we want to protect?

- Remember: NFC by default is open and interoperable, data exchange is inherently secure due to its proximity.
- ▶ We want to secure the information exchanged through the NFC interface between A and B.
- ► Information security goals
 - Confidentiality
 - Integrity
 - Authenticity
- Cryptography as a means to achieve information security goals.

Threat

Information Security goal

Mechanism

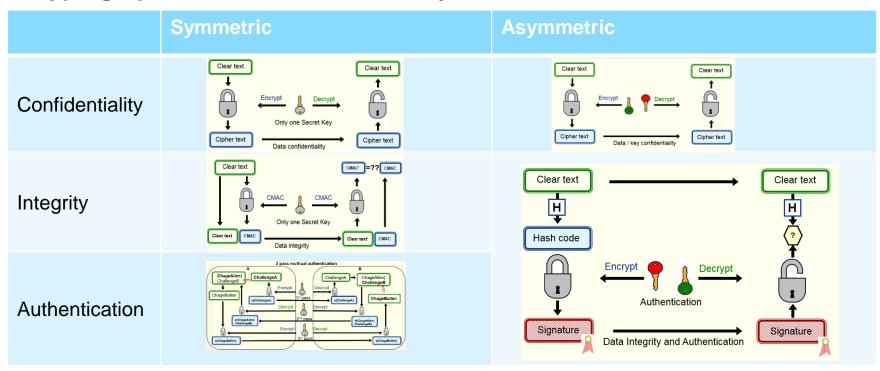
Algorithm

Information Security goals

Security goal	Description	Mechanism	Algorithm
Confidentiality	Guarantee that data cannot be read by an unauthorized entity	Encryption/Decryption	
Integrity	Guarantee that data cannot be changed by an unauthorized entity	CMAC and Digital Signatures	TDES, AES, RSA, ECC
Authentication	Guarantee mutual identification of two parties entering into a communication	Static (password, PIN,) Dynamic (challenge-response protocol)	

- ▶ Using cryptographic algorithms implies usage of **secret keys.**
- ► Cryptographic algorithms:
 - Symmetric: Same key on both sides. TDES, AES.

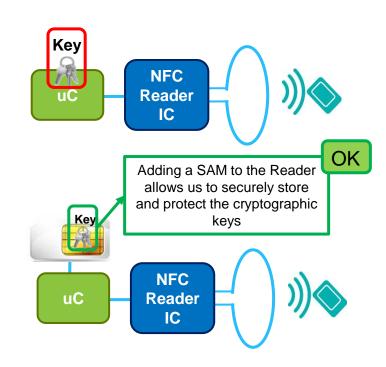
Secret key


Public key

Private key

Asymmetric: Public/private key pair. RSA, ECC.

Cryptographic mechanisms summary

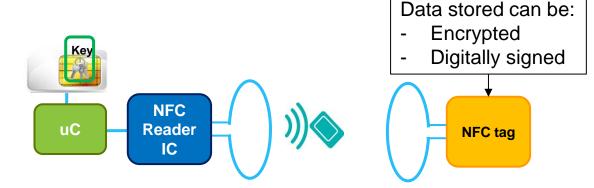

Secret Keys need to be protected and securely distributed

Secret Key management

- ▶ How are the secret keys loaded into the NFC Reader?
- ▶ Where are the keys located in the NFC Reader?
 - Microcontroller not designed to protect secret keys

- ▶ Using NXP's Secure Access Modules:
 - Highest level of protection for cryptographic keys
 - Secure remote management of key storage tables
 - Additional support for MIFARE products' cryptography

Secure Access Modules (SAMs)



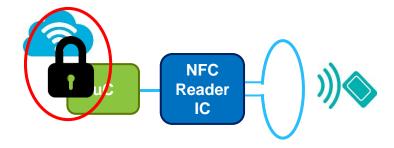
- Supports MIFARE DESFIRE EV1, MIFARE Plus, MIFARE Classic and MIFARE Ultralight C
- Can be used for generic cryptography (symmetric and asymmetric)
- ► Supports TDES, AES, RSA and Crypto1 cryptographic algorithms
- ► 128 key entries
- ► ISO/IEC 7816 contact interface, with a communication speed up to 1.5 Mbps
- Can work in X-mode
- ► Hardware Common Criteria EAL 5+ certified

Data protection for NFC tags

- ▶ To ensure confidentiality of the written data in the tag:
 - Data stored are encrypted.
 - Secret key to decrypt it stored in SAM in the NFC device.
- ▶ To ensure data integrity and authenticity of the written data in the tag:
 - Digital signature added to data stored.
 - Secret key to verify digital signature stored in SAM in the NFC device.

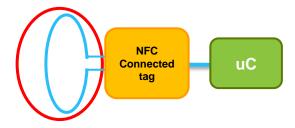
Secure data exchange summary

- Objective: secure data being exchanged through RF interface or available in EEPROM of NFC tag.
- Use cryptographic mechanisms to achieve information security goals:
 - Confidentiality
 - Integrity
 - Authenticity
- Cryptography implies the usage of keys: how are keys securely distributed and stored?
- NXP Secure Access Modules (SAM) to ensure highest level of protection in your NFC device.



PROTECTION FROM UNAUTHORIZED ACCESS

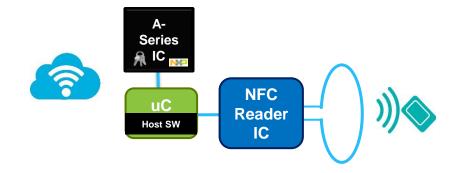
NFC device access considerations


Remote Access protection:

► A device that is connected to the cloud is subject to be compromised and attacked if not properly protected

NFC Interface Access protection:

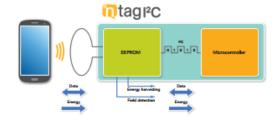
An NFC Connected tag is inherently secure due to proximity, however to avoid unauthorized modifications of data through NFC interface it needs to be properly configured.



Remote access protection

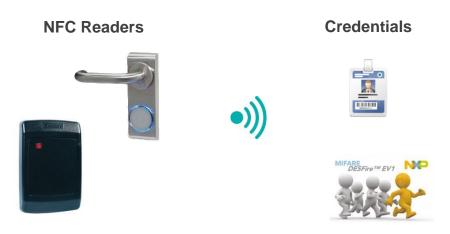
- Need to implement security mechanisms to:
 - Grant access to authorized servers
 - Prevent exposure of user related data (privacy)
 - Secure communications between device and backend
 - Ensure system integrity
 - Protection of credentials
- Above objectives can be ensured through:
 - Cryptographic methods
 - Hardware based security
- ► A-Series ICs from NXP are HW Security Module for IoT Devices
 - Supporting wide variety of use cases and targeting multiple applications
 - Off-the-shelf solutions offering key injection service, on chip application SW and host library with a high level API.

ADAPT TO ANY TYPE OF µC



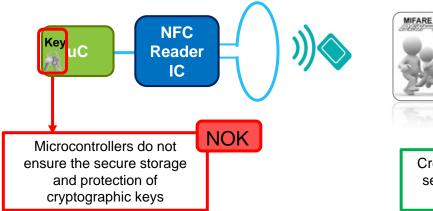
NFC Access protection

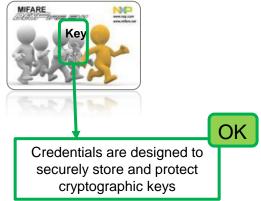
- Ensure that data written in EEPROM from NFC tag cannot be modified.
- ▶ NFC tags from NXP offer several features to protect EEPROM:
 - All NTAG Lock bits for read-only EEPROM
 - NTAG21xF Password protection mechanism
 - NTAG I2C no WRITE Access from the NFC side through configuration registers



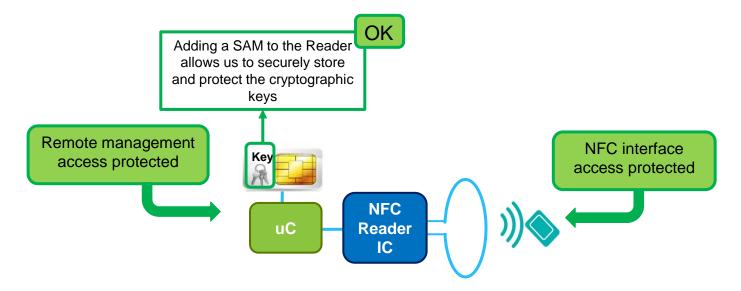
USE CASES

Access control systems

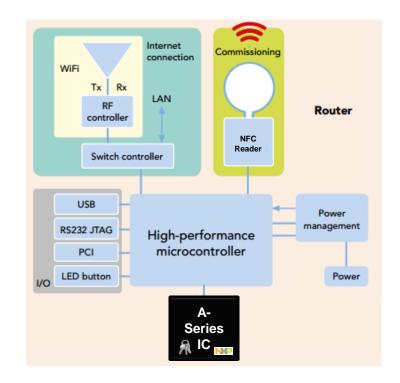

- ▶ What do we want to achieve in Access Control systems?
 - Secure system with optimized cost
 - Intuitive and fast access
 - Simple and flexible management
- ▶ NFC Technology fully covers the above requirements.
- Credentials designed to securely store and protect cryptographic keys.
- ▶ NFC Readers shall be designed to offer the same level of protection.



Security design in NFC access control systems Cryptographic keys

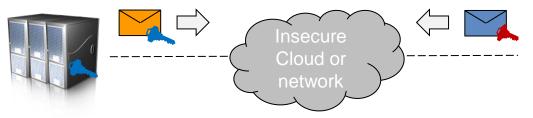


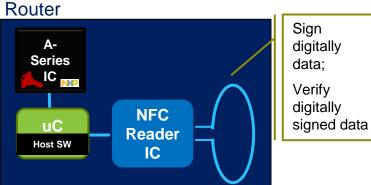
Security design in NFC access control systems SAM ensures protection in overall system


- ► Secure Access Module (SAM) in the NFC Reader:
 - Ensure data exchange protection over NFC interface
 - Protect remote access to the NFC reader

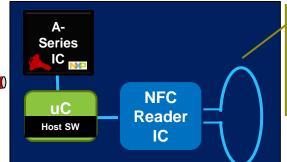
Internet gateway

- ► As homes become "smarter", the number of IoT devices continues to expand. The router is truly the heart of the "Smart Home".
- Router acts as a home Gateway, providing internet access to all devices.
- ► A-Series to ensure security towards the internet.
- ▶ NFC Reader for confidential commissioning.





Internet Gateway


Secure cloud access use case

Use Case: Authentication

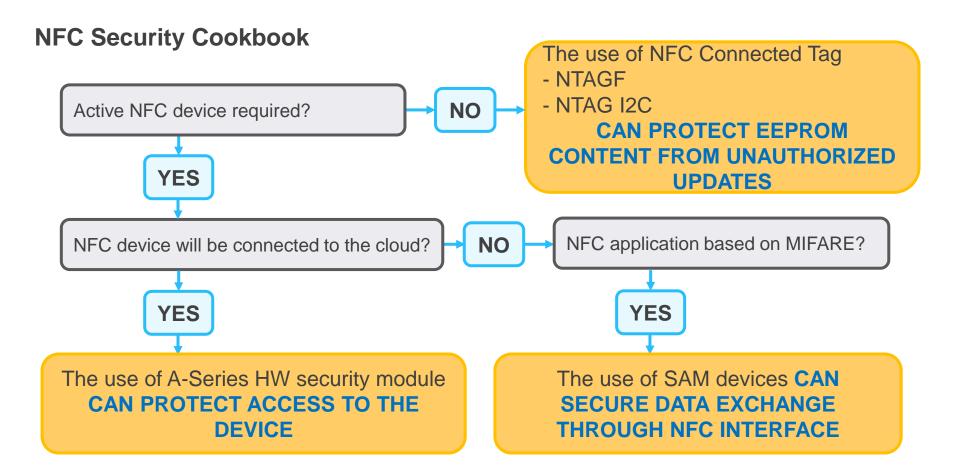
Use Case: Secure Channel fad%&SH28sjdksjdf Jdef87\$6sdf!s

Router

Setup Secure channel;

Encrypt/
Decrypt

Internet Gateway Confidential commissioning use case

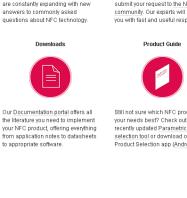

▶ IoT devices obtain access to home network through an NFC tap.

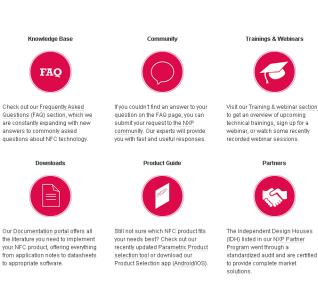
- ► Confidential mode:
 - 1. Router writes Network key in NTAG,
 - 2. IoT Device reads key through I2C bus,
 - 3. IoT Device deletes key in NTAG I2C.

CONCLUSION

Summary and Conclusion

- ▶ NFC enabled devices are growing exponentially.
- Security enhancements for NFC enabled devices:
 - Secure data exchange
 - Unauthorized access protection
- Secure data exchange
 - Information security goals: confidentiality, integrity and authentication
 - Cryptographic mechanisms: encryption, MAC/Digital Signature, 3 pass mutual authentication
 - Symmetric and assymetric cryptography
 - SAM for secure key storage
- Unauthorized access protection
 - Remote access protection through A-Series HW security module
 - NFC access protection features in Connected tags

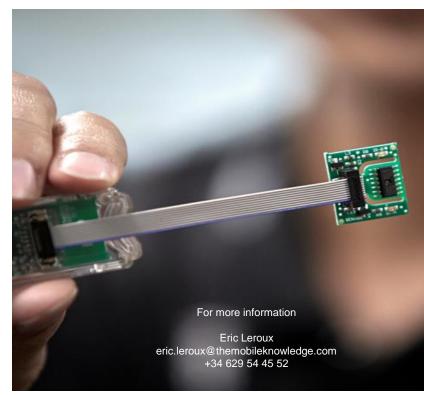



Need More? NXP - NFC Reader Solutions

Reference material & documentation:

- NFC Everywhere http://www.nxp.com/nfc
- NFC Everywhere support page: http://www.nxp.com/techzones/nfczone/community.html
- Reader forum: http://www.mifare.net/en/micommunity/forum/mif are-and-nfc-reader-ics

For other questions or further support, please contact: nfc.readers@nxp.com



MobileKnowledge

Thank you for your attention

- We are a global competence team of hardware and software technical experts in all areas related to contactless technologies and applications.
- Our services include:
 - Application and system Design Engineering support
 - Project Management
 - Technological Consulting
 - Advanced Technical Training services
- ▶ We address all the exploding identification technologies that include NFC, secure micro-controllers for smart cards and mobile applications, reader ICs, smart tags and labels, MIFARE family and authentication devices.

