

NFC in Android Public

MobileKnowledge October 2015

Index

- Android mobile Operating System
 - Market share
 - Brief history
 - Programing in Android
- NFC in Android
- Communicating my Android phone with NFC Readers
 - Read/Write Mode
 - Connected Tags
 - Card Emulation & Peer-to-Peer Mode
 - ✤ NXP NFC Readers
- ► Integrating NFC into my Android NFC Reader
 - PN7120 NFC Controller
- NFC Android applications by NXP
 - NXP TagInfo, NXP TagWriter, NTAG I2C, ...

What is a Mobile OS?

- A mobile Operating System, is an operating system specifically designed to run on mobile devices such as mobile phones, smartphones, PDAs, tablet, computers and so on.
- The Mobile OS is the software platform on top of which other programs, called applications, can run on mobile devices. It provides hardware abstraction to these applications.

Introduction to Android and NFC

Android in mobile devices

- Android is a Mobile Platform and its software stack includes:
 - The Operating System based on Linux
 - The middleware that allows apps to talk to a network or to one another
 - Key applications that the phones will run
- Android is a very popular mobile platform as it is multi-platform, open-source and free.
 - +1.5M apps on the PlayStore
 - +1.5B downloads from the PlayStore every month
 - +1M devices activated worldwide every day
 - +450K publishers

Source: International Data Corportation

- Android is the Mobile Platform used by many phone manufacturers
 - Samsung, Sony, LG, HTC, Motorola, Huawei, Lenovo, Oppo, Xiaomi, etc.

Android Versions

Brief history ...

- > 2003: Android Inc. was founded in California (USA)
- > 2005: Google acquired startup Android Inc. to start Android platform
- ▶ 2007: Open Handset Alliance announced
- > 2008: First Android phone released (HTC Magic) together with SDK 1.0 and Android Open Source Project (AOSP)

Version	Code Name	Release Data	API	
6.0	Marshmallow	October, 2015	23	
5.1	Lollipop R1	March, 2015	22	
5.0	Lollipop	November, 2014	21	
4.4.x	KitKat	October, 2013	19	
4.1.x	Jelly Bean	July, 2012	16	
4.0.x	ICS	December, 2011	15	
3.x	Honeycomb	Feb, 2011	11	
2.3.3–.7	Gingerbread	February, 2011	10	
2.3.0–.2	Gingerbread	December, 2010	9	
1.0	Apple Pie	September, 2008	1	

Introduction to Android and NFC

Android everywhere

NFC connected devices

Market update - some key figures

- 1.2 billion smartphones shipped in 2014
- Smartphone's share expected to continue growing from 67% in 2014 to > 80% or even higher in coming years
- ▶ 850 million NFC handsets shipped between 2012 and 2014
- ▶ 3 in 4 mobile phones to come with NFC by 2018
- > 5 billion NFC handsets will be shipped between 2013 and 2018
- NFC-enabled CE devices and tags growing exponentially, IoT wave coming.

* Updated list of NFC phones and tablets available in the market: <u>http://www.nfcworld.com/nfc-phones-list/</u>

Sources: ABI Research, Sep'14

Android programing

Development environment

Android Studio

- Android Studio is the official IDE by Google
 - http://developer.android.com/sdk/index.html
- Android Studio is an all-in-one installation
 - Android Studio IDE
 - Android SDK tool
 - Latest Android API Platform Android 6.0 (Marshmallow)
 - Latest Android API emulator system image Android 6.0
- Android Studio is multi-platform
 - Windows, MAC, Linux
- Advanced GUI preview panel
 - See what your app looks like in different devices

Last Updated: 06/10/2015

Android programing

- Android developers website
 - http://developer.android.com/index.html
- Applications written in Java programing language
- Android security constraints:
 - Each application runs in its own process.
 - Each application is assigned a unique Linux user ID; by default, files of that application are only visible to that application.
- Android APK: Application PacKage file
 - File format used to distribute and install applications

NFC in Android

NFC Technology Read/Write mode

Card Emulation

Read/Write

Reads / Writes data from any tag or contactless card

NFC in Android

- Card Emulation mode "supported"
 - HCE supported since Android KitKat
- Read/Write mode supported
 - Passive NFC Forum Tags
 - Tag Type 1: Topaz
 - * Tag Type 2: MIFARE Ultralight & NTAG (simple dedicated API)
 - Tag Type 3: FeliCa
 - * Tag Type 4: MIFARE DESFire
 - Proprietary NXP NFC Tags
 - * MIFARE Classic (simple dedicated API)
 - * ICODE
- Peer to Peer mode supported
- Android NFC developer's guide
 - http://developer.android.com/guide/topics/connectivity/nfc/index.html

Card Emulation Mode

Card Emulation Mode

Configurations

- Secure Element
 - Proven high-secure and tamper-resistant microcontroller in the device
 - * Same family of product used for mass market solutions: payment cards, e-Passports...
 - A specific IC to handle and store sensitive data
 - * Non-Volatile Memory, Security CPU, Crypto co-processors
 - Protected against attacks and tampering by cryptographic keys
 - Only authorized entities can access the SE
 - Secure IC validated by third party certification, i.e. Common Criteria
- Host Processor
 - Main processor of the device in which the OS and applications reside
 - Sensitive information is stored in the Host Processor or in the Cloud
 - * More memory available via host versus secure element
 - Application/service providers and end users get (more) control
 - "more-simple-but-less-secure" card emulation
- ► The NFC Controller forwards each APDU according to its Routing Table

Card Emulation Mode

Emulating NFC Applications

- How to develop my Android NFC application
 - Indicate where the application will be emulated
 - * To be indicated in the androidmanifest.xml file (ON or OFF Host APDU Service)
 - In HCE exchange APDUs with the NFC Reader
 - * Based on Android Services (NFC application available even if not in the foreground)
 - In SECE communicates with the SE using APDUs
 - * SEEK for android based on Open Mobile API
 - NFC Extras library
 - Communication restricted to applications signed with a key in /etc/nfcee_access.xml
 - Application logic will be NFC application dependent

- https://developer.android.com/guide/topics/connectivity/nfc/hce.html
- http://nelenkov.blogspot.com.es/2012/08/accessing-embedded-secure-element-in.html
- http://seek-for-android.github.io/

NFC Frontend solutions

- Robust, flexible options
- Supported by NFC Reader Library
- Power-saving passive mode

High-performance NFC frontends		
CLRC663	High-performance multi-protocol NFC ready frontend	
MFRC631	High-performance ISO/IEC 14443 A/B frontend	
MFRC630	30 High-performance MIFARE frontend	
SLRC610	High-performance ISO/IEC 15693 frontend	
Standard-performance NFC frontends		
PN512	Full NFC Forum-compliant frontend	
MFRC523	FRC523 Standard 3V ISO/IEC 14443 A/B frontend	
MFRC522	RC522 Standard 3V MIFARE frontend	
High-performance frontends delivering full NFC Forum compliance		
PN5180	High-performance multi-protocol full NFC Forum-compliant frontend (available 2015)	

NFC controller solutions

Read/Write Mode

Read/Write Mode

Operating on NFC Tags

- How to develop my Android NFC application
 - Indicate NFC support and optionally Tag Technologies to capture
 - * Defined in the project AndroidManifest.xml file
 - Capture and filter tags tapped by the user
 - Based on Android Intents
 - Get tag supported technologies and obtain the specific tag object
 - * Supported card technologies can be obtained from the Intent
 - * Android provides the classes and methods to manage all technologies
 - Connect to the tag
 - Exchange tag specific commands
 - * Exchange read, write, ... commands according to your application logic
 - Close the connection with the tag
- Sample application by Android developer's guide
 - http://developer.android.com/guide/topics/connectivity/nfc/advanced-nfc.html
 - Read and write MIFARE Ultralight tag

Connected NFC Tag solutions

- Passive, NFC Forum type 2 tag
- Field-detection function
- Optional I²C interface
- NTAG F for battery-powered systems
- ► NTAG I²C for full bi-directional communication with host microcontroller
- Innovative energy-harvesting feature for low-power systems

Connected NFC Tag solutions		
NTAG 216F	Passive NFC tag with field-detection output signal, 888 bytes	ntag
NTAG 213F	Passive NFC tag with field-detection output signal, 144 bytes	i cag
NTAG I ² C 2k	Passive NFC tag with I ² C interface, 1904 bytes	
NTAG I ² C 1k	Passive NFC tag with I ² C interface, 888 bytes	ntagl ² Crm

https://www.mifare.net/es/productos/tools/mifare-sdk/

Read/Write Mode MIFARE SDK

- Software development tool that lets developers create contactless applications for MIFARE, NTAG and ICODE products.
- Developers are able to benefit from an enormous reduction in development time.
 - Developers focus on designing creative apps and the best GUI brand.
 - Short time from idea to market •
- Get rid of "complicated" datasheets and application notes
 - Full command set support on Java level
- Comprehensive documentation: User Manual and Javadoc
- Source code examples to get familiar with the technology
- Talk to our experts on the MIFARE SDK Forum

INTagl2C abstract com.nxp.nfclib.ntag iava.lang com.nxp.nfclib.Interface CustomModules NTagl2C class class blockDynamicLocking(int) : void clear() : void com.nxp.nfclib.ndef 📏 configRegLock(byte) : void disableLockingAndConfiguration() : void INdefMessage enablel2CClockStretching(boolean) : void enablePassMode(boolean) : void enablePassModeDataDirection(boolean) : void enableSoftResetl2cRepeatedStart(boolean) : void com.nxp.nfclib.ntag enableSRamMirroring(boolean) : void 📏 fastRead(int. int) : bvtell INTag.NTagType ♦ formatT2T() : void enum getCardDetails() : NTagl2C.CardDetails NTagl2C.CardDetails getConfigBytes() : byte[] class 📏 getSessionBytes() : byte[] NTagl2C.FieldDetectOFFOptions 📏 getVersion() : byte[] 📏 isBlockOfPageLocked(int) : boolean enum 📏 isPageLocked(int) : boolear NTagl2C.FieldDetectOnOptions 📏 isT2T() : boolean enum IockBlockOfPage(int) : void IockTheBlockingOfAllDynamicPages() : void makeCardReadOnly() : void 📏 readFixedSramMirrorData() : bvtell 📏 readNDEF() : INdefMessage sectorSelect(byte) : void setConfigFDOFF(NTagl2C.FieldDetectOFFOptions) : void setConfigFDON(NTagl2C.FieldDetectOnOptions) : void setLastNDEFPage(int) : void setSRamMirrorPage(int) : void

com.nxp.nfclib.ntag

com.nxp.nfclib.ntag

NTag

♦ setWatchDogTimer(bvte, bvte) ; void 📏 writeConfigBytes(byte[]) : void writeNDEF(INdefMessage) : void

Strina

class

Peer-to-Peer Mode

Peer-to-Peer Mode

- ► Android NPP: since v2.3
 - Exchange data between two Android devices (Google solution)
 - Fast, easy and very intuitive (tap & touch)
- Android Beam: since v4.0
 - Exchange data between two NFC devices (interoperable solution)
 - More secure solution (Touch to Beam)
 - Compliant with SNEP specification
- Android Beam: since v4.1
 - Provides automatic connection handover mechanism to BT
 - Suitable for media exchanging

()((B))((B))((E))((E))

Peer-to-Peer Mode

Operating on NFC Tags

- How to develop my Android NFC application
 - Indicate NFC support
 - * Defined in the project AndroidManifest.xml file
 - Use of the following methods
 - * setNdefPushMessage: it automatically beams the message when two devices are in close proximity
 - * setNdefPushMessageCallback(): it calls a callback method to create the NDEF message just before sharing it
- Android Beam restrictions
 - Device must be unlocked and touching the screen is mandatory for security reasons
 - The application must be in the foreground
 - Exchanging one unique NDEF message on each Android Beam session is allowed
 - Android Beam only supports Put Request by SNEP
- Sample application by Android developer's guide
 - http://developer.android.com/guide/topics/connectivity/nfc/nfc.html#p2p

Peer-to-Peer Mode Communication modes

The ISO 18092 standard defines two modes of communication

Active / Passive

Only one device generates the magnetic field. In terms of RF, the initiator behaves like a reader and the target behaves like an emulated target

Active / Active

Both devices generate the magnetic field. Higher bit rates and distances might be reached, but the solution is more complex and consumes more battery

Integrating NFC into my Android NFC Reader

PN7120 Best plug'n play full NFC solution

- Full NFC Forum-compliant controller
- Support NFC card emulation, reader/writer and peer-to-peer modes
- Compatible with ISO/IEC 14443-A&B, FeliCa and ISO/IEC 15693 cards
- Integrated firmware with NCI interface
- Android and Linux software drivers
- Low power operation mode

Learn more about PN7120 in our dedicated webinar PN7120: Best plug'n play full NFC solution

Product website PN7120: www.nxp.com/products/identification and security/nfc and reader ics/nfc controller solutions/PN7120A0EV.html

PN7120 in a nutshell

Customer Benefits

- Low PCB footprint
- Low power consumption
- EMVCo 2.3.1a PCD analog and digital
- NFC Forum Device Requirements v1.3
- Full SW stack available for integration within Linux and Android 4.4.x and 5.x

Features

Ease of integration

- Direct connection to 5.5V device battery
- Flexible clock supply concept
- Supports both 1.8 and 3V connections to host controller
- Buffered output drivers to connect an antenna with minimum number of external components

Flexibility in use case supports

- Fully configurable polling loop with low power modes for automated device discovery
- Autonomous mode when host is shut down (host can be in a deep sleep mode and be awakened via IRQ pin by PN7120 when entering RF field)

RF communication modes

Reader/Writer modes

- NFC Forum tags Type 1, 2, 3, 4 and 5
- ISO/IEC 14443 Type A & B, R/W up to 848 Kbps
- ISO/IEC 15693 Tags (ICODE)
- FeliCa tags up to 424 Kbps
- MIFARE 1K/4K
- MIFARE DESFire
- Kovio ink printed tags

Card modes

ISO/IEC 14443-A and B card emulation via host

P2P modes

 Active and passive initiator and target according to ISO/IEC 18092 at all data rates (106 kbps to 424 kbps)

Interfaces

- I2C up to 3,4MBaud/s
- NFC Forum NCI 1.0 compliant protocol

Package

VFBGA49

PN7120 NCI Interface

- The NCI defined by the NFC Forum is the specification that defines a standard interface within an NFC device between an NFC controller and the device's main application processor.
- The NCI interface provides manufacturers with a standard interface they can use for whatever kind of NFC-enabled device they build
- NXP extends NCI interface with a proprietary extension to allow customers access to the entire functionality set defined by the PN7120.

PN7120 SW integration in Android

Android NFC stack

- ► NFC service: API within the Android framework that provides access to the NFC functionality.
- JNI: Glue code between Java classes and Native classes (written in C/ C++)
- Libnfc-nci: Native library providing NFC functionality for which extension is added to support NXP proprietary features
- NXP NCI HAL: NXP hardware specific implementation supporting full capabilities
- PN5xx_I2C driver: kernel module allowing the access to NXP NCI based NFC Controller hardware resource.

PN7120 SW integration in Android

Android porting guidelines

- PN5xx I2C Kernel mode driver
 - Robust and mature communication with the NXP NCI NFC Controller
 - Both the libnfc-nci stack and the PN5xx I2C driver are distributed by GitHub:
 - Android libnfc-nci stack: <u>https://github.com/NXPNFCLinux/android_nxp-nci</u>
 - PN5xx I2C driver: <u>https://github.com/NXPNFCLinux/nxp-pn5xx</u>
- AOSP Integration
 - Merge NXP-NCI Android NFC package into the target AOSP source directory
 - Add NFC to the build by modifying device/brand/platform/device.mk file

Integration details explained in dedicated Application Note in Docstore

* AN11690 NXP-NCI Android porting guidelines

open source project

NFC Android apps by NXP

NFC Android apps by NXP

NXP TagInfo and NXP TagWriter

NXP TagInfo

The ideal tool to get detailed information about contactless ICs, explore the capabilities of NFC-enabled items and browse detailed information about the content stored on your NFC tags

~		Result Write successful
(≡)		Tag type and NFC storage size
		NFC Forum Type 2 Tag
		1868 bytes
Read tags	Write tags	New content
		Xperia Z1
		* 68:76:4F:C3:C9:2E
	T	Bluetooth (67 bytes)
<u>~</u>		Previous content
Erase tags	Protect tags	Empty
My c	latasets	

NXP TagWriter

The ideal tool to store contacts, bookmarks, Bluetooth and WiFi Handover, etc. to any NFC-enabled items based on NDEF messages. Once data has been stored, it allows us to read the programmed data including options to launch applications based on the stored data.

NFC Android apps by NXP

NTAG I2C Demoboard

- App to be used together with the NTAG I2C Explorer Kit
 - <u>https://nxp-rfid.com/products/ntag/ntag-i2c-explorer-</u> demonstration-and-development-kit/
- Operate on your NTAG I2C IC:
 - Configure the IC using the SRAM by changing the LED color to light up on the NTAG I²C demonstration board
 - Measure the speed of download and upload with NTAG I²C based on your NFC device
 - Read & change the IC configuration by updating the NTAG I2C Session & Configuration Registers
 - And more ...

Conclusion

NFC in Android Wrap up

- Android is the undeniable Mobile OS market leader and NFC is becoming a commodity
 - It opens a huge new business opportunity for companies
- Android devices are the ideal way to communicate with NFC infrastructure readers
 - Connected tags in Read/Write Mode
 - NXP NFC Readers in Card Emulation & Peer-to-Peer Mode
- PN7120 is the best plug'n play solution to integrate NFC in your target NFC Reader device
- NXP NFC Android applications let you understand the NFC basics and interact with your NFC tags

MobileKnowledge Thank you for your attention

- We are a global competence team of hardware and software technical experts in all areas related to contactless technologies and applications.
- Our services include:
 - Application and system Design Engineering support
 - Project Management
 - Technological Consulting
 - Advanced Technical Training services
- We address all the exploding identification technologies that include NFC, secure micro-controllers for smart cards and mobile applications, reader ICs, smart tags and labels, MIFARE family and authentication devices.

