DESIGN AND IMPLEMENT NFC APPLICATIONS

SESSION 4: NFC READER LIBRARY

SW SUPPORT FOR NFC FRONTENDS AND NFC CONTROLLERS WITH CUSTOMIZED FIRMWARE

October 2016

SECURE CONNECTIONS FOR A SMARTER WORLD

Agenda

Design and implement NFC applications

Session I, 7th September Product support package for NXP NFC readers https://attendee.gotowebinar.com/rt/2329750067403618817

Session II, 28th September Antenna design considerations for NXP NFC reader solutions https://attendee.gotowebinar.com/rt/282682617345186049

Session III, 18th October The NFC Cockpit - the complete design tool for engineers https://attendee.gotowebinar.com/rt/4665515186055692545

Session IV, 31st October NFC Reader Library - SW support for NFC frontend solutions https://attendee.gotowebinar.com/rt/7151741873899128067

NP

Agenda

Design and implement NFC applications

Session 4, 31st October NFC Reader Library: SW support for NFC frontends and NFC controllers w. custom. FW

- Introduction to the NFC Reader Library
- ▶ NFC Reader Library architecture
- ▶ Using the NFC Reader Library
 - Building the SW stack
 - Discovery loop configuration
 - Simplified API
- Software examples
- Documentation

Our support for NFC

NFC IMPLEMENTATION PROCESS

Evaluate the functionality Select IC https://community.nxp.com/community/nfc Full range of development kits for every NFC **Evaluate Features Today's session** Hardware Prototyping Software or MPU Test & Debug Get Certified

NXP SUPPORT

 Independent Design Houses certified by NXP IDH partner: www.nxp.com/partners, select "HW/SW engineering service"

3

INTRODUCTION TO THE NFC READER LIBRARY

Everything you need to create your own software stack and application for a contactless reader

	Common (Layer independent)										
Key Store	ISO14443-4 CID Man.	Tools (CRC, Parity)	Log	OSAL Utils	CryptoSym	CryptoRng	phPlatform				
Sw RC663				Linux Free NULL RTOS OS	Sw	Sw	PN7462AU LPC11u68 LPC1769 K82 Raspberry Pi				

- Modular •
- Multi-layered •
- ANSI-C language
- Portable to multiple ٠ design environments and platforms
- Free download •

Info and source code: http://www.nxp.com/pages/:NFC-READER-LIBRARY

Benefits

Scalability: Only required software components and protocol implementations need to be enabled, so the final application has a smaller footprint.

Optimum performance: Fine-tune your design with built-in MCU support, interrupt-based event handling, free RTOS support and compilers that produce highly compact and efficient code.

Faster development: Save time and effort by using the APIs and the rich set of sample applications for all the most common functions.

Simpler certification: Get ready for certification with test applications for EMVCO L1, NFC Forum and ISO/IEC10373-6 PICC/PCD

The same software stack for PN512, CLRC663, PN5180 and PN7462 solutions

The same software stack for PN512, CLRC663, PN5180 and PN7462 solutions

EMVCs poling Hest Card NTAG I2C MEAR demo DESFire d productor

PN5100 RC463 PN512/ PN7462A

Support for multiple platforms

NFC Reader Library v4.040.03.001640 supports: LPC1769/LPC11U68 connected to PNEV512B, CLEV663B and PNEV5180B boards FRDM-K82 connected to PNEV512B, CLEV663B, PNEV5180B and PNEV7462B boards Raspberry Pi connected to PNEV512B, CLEV663B, PNEV5180B and PNEV7462B boards

Release contents

Development environment

Note: LPC-Link2 board may be required as a stand-alone debugger as well

11 Training Mobile . Knowledge

Where to get it

						👤 Jordi 🔻	🙂 English 🔻	📅 Cart	
					ALL *			Q	
	PRODUCTS	APPLICATIONS	SUPPORT	ABOUT					
ND	(P > Identification ar	nd Security > NFC and Re	ader ICs > NFC Co	ontroller Solutions					~

NFC Reader Library - Software support for NFC Frontend solutions

Overview Documentation

Jump To Overview

Overview

Feature complete software support library for NFC Frontend ICs. Designed to give developers a faster and simpler way to deliver NFC-enabled products. This multi-layer library, written in C, makes it easy to create NFC based applications. Special features, including interrupt-based event handling, Free RTOS support and MISRA-C compliancy, are provided along with the NFC Reader Library. The software is designed in a way to be easily portable to many different microcontrollers.

Application Notes

Features

- All NXP® NFC frontend ICs
- Full feature set according to NFC Forum
- Synchronous API
- Modular, multi-layer design
- Interrupt-based event handling
- Supports RTOS and non RTOS based architecture
- Supports multiple development environments
- Certification test applications for EMVCo L1, NFC Forum. ISO/IEC 10373-6 PICC/PCD
- Same software stack for PN512, CLRC663, PN7462AU, PN5180
- Easy switching between reader IC
- Built-in MCU support: LPC1769, LPC11U68
- Host interface: I²C, SPI, or custom
- Wide range of sample applications

Supported Products

- CLRC66302HN: High performance NFC reader solution
- PN512: Full NFC Forum compliant solution
- PN5120A0ET: Full NFC Forum compliant solution
- PN5120A0HN: Full NFC Forum compliant solution
- PN5120A0HN1: Full NFC Forum compliant solution
- PN512AA0HN1: Full NFC Forum compliant solution
- PN5180: Highpower NFC frontend solution
- PN5180A0ET: High-power NFC frontend solution
- PN5180A0HN: High—power NFC frontend solution
- PN746X_736X_SERIES: NFC Cortex-M0 microcontroller

Latest version and information available at: http://www.nxp.com/pages/:NFC-READER-LIBRARY

NFC Reader Library software packages

PN512 CLRC663 PN5180 Linux PN7462

This tab contains software for the OM25180FDK development kit. For additional information please refer to the OM25180FDK site.

NFC READER LIBRARY ARCHITECTURE

Release contents

Architecture

					Reference Application
					• The NFC Reader Library is encapsulated
					into layers and components.
					T4T-A LICP 1.1 LINK Layer
					• Each layer:
					- Consists of different components, having a
					generic interface and specific implementation
					- Is independent from the other layers
					 Is used as an entry point for the immediate
					upper layer
					 Provides a modular way of programming and
					setting up the reader interface.
					K82 Raspbery

Common Layer

16

Common Layer

PN7482AU 2 LPC11u68 2 LPC1769

K82

Sw

Sw

RTOS OS

Sw RC663

Bus Abstraction Layer (BAL)

NFC Reader Library Hardware Abstraction Layer (HAL)

19

Protocol Abstraction Layer (PAL)

PAL components contain hardware-independent implementations of contactless protocols

PAL implements communication modes and data exchange regarding the contactless protocol.

													ayer		
MIF	RE														
Cia	SIC														
		SW	31	31	54	AL (Droto or	al Abetmatic	n Lours)	Activation on	1 Evolution		011		511	
					r.		JI ADSITACII	in Layer) –	Activation and	Excitatige				_	
ISO	/IEC	ISO/IEO	ISO/	IEC IS	O/IEC	MIFARE	ISO/IEC	Felica	ISO/IEC	ISO/IEC	ISO/IE	C I	SO/IEC		
144 3A / J	443 Jewel	14443 3B	144	43 1 A	4443		14443 4mC	protocol	18092 Initiator	18092 Target	1569	3 18	000 3m3		
Sw		Sw	Sw	Sw		Sw Stub	Sw	Sw	SW	SW	Sw	Sw			4
			Contenie												
			PA	AL con	npone	nts su	pport:								
			- N	/IFAR	E			ISO18	3092 initi	ator / ta	arget	(P2F)		
					~				045000						
			ISPI – R	SO/IE	C1444	13-A		ISOIE	C15693						
									-040000						
			- 18	50/IE	J444	13-B		150/IE		J-31VI3					
				enca											
			I-4 (CRC	Parity)	LOG	USAL UTIIS	CryptoSym	Стурток пд		ph Platto	rm				

Application layer

21 Training Mobile Knowledge

* Based on NFC Forum Activity Specification v1.1 and EMVCo 2.5

** Based on NFC Forum Activity Specification v1.1

Knowledge

Activity layer

NFC Reader Library HCE and P2P layers

									MIFARE DESFire demo application				
HCE of N	E comp IFC For	AL (Ann onent im um Type	plement 4A tag	Commandsets s the car	d emula	tion	NFC Disco	Activity wery op	HCE Layer	NFC P2P SNEP 1.0 Sw LLCP 1.1	Package Network Protocols Link Layer		
									Sw	Sw :			
					NFC	P2P pac	kage c	ontain	s:				
						' e implen	nentati	on of t	hallC	D protoc	ol		
							neman						
					• Th	e implen	nentati	on of t	he SNE	P proto	col		
					Abstraction La	yer) - Interface	S						

Simplified API

Demo apps and reference applications

USING THE NFC READER LIBRARY: BUILDING THE SW STACK

Using the NFC Reader Library Building the SW stack

Library concept

nitialization

Reader

NFC

- To use the NFC Reader Library, a stack of components has to be initialized.
- Each layer generates a context data which is used as an entry point for the immediate upper layer.
- The component initialization must be built up by a *bottom to top* approach

Building the SW stack (Example)

 The application requirements define which modules need to be enabled.

- NFC Read/Write, P2P and Card Emulation modes are supported by separate components
- In the following slides, we will show an example with these parameters:
 - MIFARE Classic application
 - NFC Reader IC: CLRC663
 - Host controller: LPC1769

Building the SW stack (Example II)

Γ	Key Store	ISO14443-4 CID Man.	Tools (CRC, Parity)	Log	OSAL Utils	CryptoSym	CryptoRng	ph Platform		Initialize the Key Store module
	Sw RC663				Linux Free NULL RTOS OS	Sw	Sw	PN7482AU LPC11u68 LPC1789 K82 Raspberry Pi		(e.g. Crypto-1 keys)

Building the SW stack (Example III)

1. Host interface initialization generates a data context used to initialize and configure the upper layer (HAL)

phhalHw_Rc663_Init(..., void *pBalDataParams, ...)

2. NFC Reader IC initialization generates a data context used to initialize PAL and Discovery Loop components

phpalMifare_Sw_Init(..., void *pHalDataParams,...)

phpanI14443p3a_Sw_Init(...,void *pHalDataParams,...)

phacDiscLoop_Sw_Init(..., void *pHalDataParams, ...)

3. MIFARE PAL initialization generates a data context used to initialize MIFARE Classic component

phalMFc_Sw_Init(..., void *pPalMifareDataParams, ...)

Building the SW stack (Example IV) - Project build setup (ph_NxpBuild.h)

Log OSAL Utils CryptoSym CryptoRng phPlatform

Key Store 19O14443-4 CID Man. Tools (CRC, Parity) Log OSAL Ubils CryptoSym CryptoRng phPlatform 5w Roces Fee: 18LL Sw Sw PM7463AU LPC11048 LPC1708 Raspherry

- The build setup and functionality is set in the file: ../intfs/ph_NxpBuild.h.
- This file defines the modules to be included into the build setup or to be excluded from the build setup.
- There is a specific **macro** defined for including / excluding each SW component
- Components can be included / excluded depending on the application requirements or to optimize memory footprint.

Components not included in the project build

USING THE NFC READER LIBRARY: DISCOVERY LOOP CONFIGURATION

Using the NFC Reader Library Discovery loop

- It is a routine that sequentially sets the reader IC in different functional states and configurations so it can discover the presence of tags or NFC devices in the RF field.
- The discovery loop completes the following functionalities:
 - Technology detection: Detects whether there is another device or tag to communicate with and, if so, what technologies it supports.
 - **Collision resolution**: Detects the presence of multiple devices or tags and enumerates the different identifiers.
 - **Device activation**: Activates a particular device or tag to establish a communication.

Using the NFC Reader Library Discovery loop – Configuration settings

phacDiscLoop_SetConfig(..., PHAC_DISCLOOP_CONFIG_PAS_POLL_TECH_CFG)

/** Configure technologies to be detected in passive poll mode */ #PHAC_DISCLOOP_POS_BIT_MASK_A -> Detect Type A.\n #PHAC_DISCLOOP_POS_BIT_MASK_B -> Detect Type B.\n #PHAC_DISCLOOP_POS_BIT_MASK_F212 -> Detect Type FELICA @ 212K #PHAC_DISCLOOP_POS_BIT_MASK_F424 -> Detect Type FELICA @ 424K #PHAC_DISCLOOP_POS_BIT_MASK_V -> Detect Type V / ISO 15693.\n #PHAC_DISCLOOP_POS_BIT_MASK_18000P3M3 -> Detect ISO 18000p3M3

For scanning just Type A cards:

phacDiscLoop_SetConfig(..., PHAC_DISCLOOP_CONFIG_PAS_POLL_TECH_CFG, PHAC_DISCLOOP_POS_BIT_MASK_A)

Using the NFC Reader Library Discovery loop – Configuration settings

phacDiscLoop_SetConfig(..., PHAC_DISCLOOP_CONFIG_ACT_POLL_TECH_CFG)

/* Configure technologies to be detected in passive poll mode */
#PHAC_DISCLOOP_ACT_POS_BIT_MASK_106 -> Detect active target @ 106K
#PHAC_DISCLOOP_ACT_POS_BIT_MASK_212 -> Detect active target @ 212K
#PHAC_DISCLOOP_ACT_POS_BIT_MASK_424 -> Detect active target @ 424K

Using the NFC Reader Library Discovery loop – Configuration settings

phacDiscLoop_SetConfig(..., PHAC_DISCLOOP_CONFIG_PAS_LIS_TECH_CFG)

/* Configure technologies to listen for in passive listen mode. */
#PHAC_DISCLOOP_POS_BIT_MASK_A -> Listen for Type A.\n
#PHAC_DISCLOOP_POS_BIT_MASK_F212 -> Listen for Type FELICA @ 212K
#PHAC_DISCLOOP_POS_BIT_MASK_F424 -> Listen for Type FELICA @ 424K
#PHAC_DISCLOOP_POS_BIT_MASK_B -> [Not supported]
#PHAC_DISCLOOP_POS_BIT_MASK_V -> [Not supported]
#PHAC_DISCLOOP_POS_BIT_MASK_ISO18000-3M3 -> [Not supported]

Using the NFC Reader Library Discovery loop - Start

Discovery loop – Find detected technologies

 Get information about the detected NFC tags or NFC devices.

phacDiscLoop_GetConfig(pDataParams, **PHAC_DISCLOOP_CONFIG_TECH_DETECTED**, &wTagsDetected);

Macro to check that a Type A tag was detected

PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected, PHAC_DISCLOOP_POS_BIT_MASK_A) Checking whether one particular NFC tag or NFC device has been detected can be done by using the defined bitmasks

> PHAC_DISCLOOP_POS_BIT_MASK_A PHAC_DISCLOOP_POS_BIT_MASK_B PHAC_DISCLOOP_POS_BIT_MASK_F212 PHAC_DISCLOOP_POS_BIT_MASK_F424 PHAC_DISCLOOP_POS_BIT_MASK_V PHAC_DISCLOOP_POS_BIT_MASK_18000P3M3 PHAC_DISCLOOP_ACT_POS_BIT_MASK_106 PHAC_DISCLOOP_ACT_POS_BIT_MASK_212 PHAC_DISCLOOP_ACT_POS_BIT_MASK_424

USING THE NFC READER LIBRARY: SIMPLIFIED API

Simplified API

Write NFC applications using as little code as possible

- Provides a high level abstraction access to the NFC Reader Library.
- It is focused on simplicity and aimed to write an NFC application with minimum code
- It can be combined with the use of the "standard" NFC Reader Library stack API
- Three different channels available:
 - NFC Forum channel: used to transfer NDEF messages.
 - EMVCo channel: used to transfer ISO 7816 APDU's over the ISO 14443-4 protocol, according to EMVCo L1 spec.
 - **ISO channel**: general channel, used to transfer raw data transfer on block/frame level.

Simplified API

NFC Forum

EMVCo

ISO

Simplified API

Write NFC applications using as less code as possible

SOFTWARE EXAMPLES

Release contents

Example 1: BasicDiscoveryLoop

Functionality

- Scans for NFC tags and NFC devices and displays the detected device information (such as UID, SAK, Product Type for MIFARE cards)
- If multiple technologies are detected, the example will select the first detected technology to resolve.

- Shows how to poll for different technologies (NFC tag, P2P, HCE), detect and activate them.
- Shows the discovery loop initialization and configuration
- Shows the use of both POLL and LISTEN
 discovery loop modes

Example 2: AdvancedDiscoveryLoop

- Functionality

- Scans for NFC tags and NFC devices and displays the detected device information (such as UID, SAK, Product Type for MIFARE cards)
- If multiple technologies are detected, the example will select the first detected technology to resolve.

- Shows how to poll for different technologies (NFC tag, P2P, HCE), detect and activate them.
- Shows the different configuration options of the discovery loop.
- Shows the use of both POLL and LISTEN discovery loop modes

Example 3: NFCForum

- Functionality

- Scans for NFC tags and NFC devices and displays the detected device information (such as UID, SAK, Product Type for MIFARE cards)
- It implements an SNEP Server and SNEP client for NDEF data exchange between peers.

- Shows how to implement the P2P mode and reader function to detect Type A, Type B, Type F, Type V and ISO18000-3M3 tags.
- Shows how to exchange NDEF messages between two NFC-enabled devices.
- Shows active and passive communication modes.

Example 4: MIFARE Classic

- Functionality

- Detects MIFARE Classic cards and displays information like UID, SAK and ATQA.
- Performs a sector authentication, block read and block write operations.

- Benefits

- Shows the discovery loop configuration for MIFARE Classic detection.
- Shows the usage of standard MIFARE Classic commands (Authenticate, Read, Write).
- Shows KeyStore use.

Example 5: ISO/IEC15693

- Functionality

- Detects an ISO15693-compliant card and displays tag type and tag UID information.
- Performs a block read and block write operations.

- Benefits

- Shows the discovery loop configuration for ISO15693-compliant tag detection.
- Shows the usage of the most important commands for working with ISO15693-compliant tags.

Example 6: EMVCo Loopback

- Functionality

- Implements a loopback application which is used to perform EMVCo 2.5 (L1) digital compliance validation.
- · It can be tested with payment cards

- Benefits

It can be used to conduct EMVCo Level 1 PCD certification

Example 7: EMVCo Polling

- Functionality

- · Detects an EMVCo payment cards.
- It displays the response of the detected EMVCo card after the select PPSE command.

- Benefits

- Shows the discovery loop configuration for EMVCo payment card detection.
- Shows the exchange of APDU commands with EMVCo payment cards.

Example 8: HCE T4T

Functionality

- Implements a Type 4-A tag card emulation with ٠ a default NDEF message stored on its memory.
- It supports all specified commands such as Select, ReadBinary, UpdateBinary, etc
- It allows both reading and writing and NDEF messages into the emulated card.

- Shows how to emulate a Type 4 tag and to • perform read and write operations.
- Shows how to set NDEF data into a Type 4 tag. •
- It can be used to test against ISO10373-6 PICC ٠ test specification

Example 9: NTAG I²C

- Functionality

- Detects an NTAG I²C tag and displays information like UID, ATQA, SAK and version.
- Performs a SECTOR_SELECT, page READ and page WRITE operation.

- Benefits

- Shows the discovery loop configuration for NTAG I²C tag detection.
- Shows the use of commands to communicate with NTAG I²C product

Example 10: Simplified API ISO

- Functionality

 Implements sample applications for MIFARE Classic, MIFARE Ultralight, MIFARE DESFire, Type B, ISO/IEC15693 and ISO/IEC18000-3M3 using the Simplified API with an ISO profile.

- Benefits

- Shows how to use the Simplified API with an ISO profile.
- Shows reference implementations for the usage of the Simplified API related to MIFARE Classic, MIFARE Ultralight, MIFARE DESFire, Type B, ISO/IEC15693 and ISO/IEC18000-3M3 tags

Example 11: Simplified API EMVCo

- Functionality

 Implements a loopback application using the Simplified API to perform EMVCo 2.5 (L1) digital compliance validation.

- Shows how to use the Simplified API with an EMVCo profile.
- It can be used to conduct EMVCo Level 1 PCD certification

DOCUMENTATION

Release contents

NFC Reader Library reference API documentation

NXP NFC Reader Library

DISCLAIMER OF WARRANTIES

LIMITATION OF LIABILITY

Introduction Overview

LaverModel

API Reference

Revision History

Data Structures

Modules

- The NFC Reader Library reference API is also delivered in HTML format.
- It is the most friendly way to go through the NFC Reader Library API
- It is generated from source code annotations
- It can be found in: "\NxpRdLib\docs\14_user_doc"

NXP NFC Reader Library v4.040.04.001641

NXP NFC Reader Library Documentation

Introduction

- This document describes the NXP NFC Reader Library Version v4.040.03.001640 that supports the Reader Frontend ICs
 namely PN5180, PNEV512B, CLRC663 and Reader NFC Controller PN7462AU. The source code is intended to run on NXP
 LPC1769/LPC11U68 connected to PNEV512B v1.5 CE Certified blue board/CLRC663 Blue board v3.0/ PN5180 TFBGA64
 performance board v1.0, FRDM-K82 Board connected to PN5180/RC663/PN512B,RasperryPi Board connected to
 PN5180/RC663/PN512B and on the PN7462AU CortexM0 based uC.
- Intended Audience:
 - · This document is a reference to be used by the SW designers, implementers and integrators.

Overview

The NXP reader library is encapsulated into Layers and Components written in ANSI C. The library structure provides a modular way of programming and setting up the reader interface. The reader library consists of below layers

- BAL (Bus Abstraction Layer)
- HAL (Hardware Abstraction Layer)
- PAL (Protocol Abstraction Layer)
- SA (Simplified API Layer)
- AL (Application Layer)
- AC (Activity Layer)
- CE (Host Card Emulation)
- LN (Link Abstraction Layer)
- NP (Network Protocol Laver)

Generated by (0) SY/CGN 1.8.11

NFC Reader Library reference API documentation

Browse the FC Rea	der Library v4.040.04.001641	Explore the
module API 🔐 🕤	Functions	API
verview LaverModel	phNfcLib_Status_t phNfcLib_Init (void) Initialize the NFC Library. More	
API Reference DISCLAINER OF WARRANTIES:	phNfcLib_Status_t phNfcLib_DeInit (void) Deinitialize the NFC Library. More	
LIMITATION OF LIABILITY: Revision Histori	phNfcLib_Status_t phNfcLib_Activate (uint16_t wTechnologyMask, phNfcLib_f Run the Activation Procedure. More	Peerinfo_t 'peerinke_pphNfcLib_ErrCallbck ErrCallbck) Get detailed function
 Bus Abstraction Layer Hardware Abstraction Layer 	phNfcLib_Status_t phNfcLib_Transmit (void *const pTxBuffer, uint16_t wTxBuffe Send Data to an Activated Peer. More	erLength)
 Protocol Abstraction Layer Simplified API Layer 	phNfcLib_Status_t phNfcLib_Receive (uint8_t *const pRxBuffer, uint16_t *pNur Receive Data from an Activated Peer, More	mberOfBytes, uint8_t *pMoreDataAvailable)
NXP NFC Library Top Level API NFC NXP NFC Library Definitio NFC NXP NFC Library Definition	phNfcLib_Status_t phNfcLib_SetConfig (uint8_t bConfigTag, const uint8_t *p Set Configuration Parameter. More	phNfcLib_status_t phNfcLib_Init (void)
 NFC Library Conliguration rag: NFC Library Functions Application Laver 	phNfcLib_Status_t phNfcLib_SetConfig_Value (uint8_t bConfigTag, uint32_t Set Configuration Parameter using a Value. More	Initialize the NFC Library.
 Common Activity Layer 	phNfcLib_Status_t phNfcLib_GetConfig (uint8_t bConfigTag, uint8_t *pConfig Retrieve a configuration parameter value. More	functions for the underlying platform. After calling this function all other functions of the phNfcLib module may be used.
 Host Card Emulation Link Abstraction Layer 	phNfcLib_Status_t phNfcLib_Deactivate (uint8_t bDeactivateMode, phNfcLib Deactivate an Activated Peer. More	Precondition NFC library must be in state RESET
 Network Protocol Layer Other Platform HOST Porting Component 	void * phNfcLib_GetDataParams (uint16_t wComponent) Retrieve the pointer to the dataparams structure of an intern:	Postcondition All APIs are allowed to be called. NFC Library is in state INITIALIZED
Data Structures	phNfcLib_Status_t phNfcLib_AsyncAbort (vold) Used to asynchronously stop HAL waiting for RF event and e	Return values PH NFCLIB STATUS INVALID STATE NFC Library had been in a wrong state when calling this function.
4	Function Documentation	v
		Generated by doxygen 1.8.11

TO SUM UP

- It is the SW support for NXP's NFC frontends and NFC controllers with customizable firmware
- A modular, **free**, multi-layer software library written in ANSI-C that provides all the APIs needed to complete a design and prepare it for certification
- Easily portable to multiple design environments and platforms
- Complemented with software examples illustrating typical use cases.

Latest version and information available at: http://www.nxp.com/pages/:NFC-READER-LIBRARY

Software development in Android and iOS Embedded software for MCUs JCOP, Java Card operating Systems Hardware design and development Digital, analog, sensor acquisition, power management Wireless communications WiFi, ZigBee, Bluetooth, BLE Contactless antenna RF design, evaluation and testing MIFARE applications End-to-end systems, readers and card-related designs EMVco applications Readers, cards, design for test compliancy (including PCI) Secure Element management GlobalPlatform compliant backend solutions Secure services provisioning OTA, TSM services

We help companies leverage the mobile and contactless revolution

MobileKnowledge Roc Boronat 117, P3M3 08018 Barcelona (Spain)

Get in touch with us www.themobileknowledge.com mk@themobileknowledge.com

Design and implement NFC applications Session 4: NFC Reader Library- SW support for NFC frontends and NFC controllers w. custom. FW solutions

Jordi Jofre (Speaker) Angela Gemio (Host)

Thank you for your kind attention!

Please remember to fill out our evaluation survey (pop-up)

Check your email for material download and on-demand video addresses

Please check NXP and MobileKnowledge websites for **upcoming webinars** and **training sessions**

http://www.nxp.com/support/classroom-training-events:CLASSROOM-TRAINING-EVENTS www.themobileknowledge.com/content/knowledge-catalog-0

